首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Conversion of leaves into petals in Arabidopsis   总被引:22,自引:0,他引:22  
More than 200 years ago, Goethe proposed that each of the distinct flower organs represents a modified leaf [1]. Support for this hypothesis has come from genetic studies, which have identified genes required for flower organ identity. These genes have been incorporated into the widely accepted ABC model of flower organ identity, a model that appears generally applicable to distantly related eudicots as well as monocot plants. Strikingly, triple mutants lacking the ABC activities produce leaves in place of flower organs, and this finding demonstrates that these genes are required for floral organ identity [2]. However, the ABC genes are not sufficient for floral organ identity since ectopic expression of these genes failed to convert vegetative leaves into flower organs. This finding suggests that one or more additional factors are required [3, 4]. We have recently shown that SEPALLATA (SEP) represents a new class of floral organ identity genes since the loss of SEP activity results in all flower organs developing as sepals [5]. Here we show that the combined action of the SEP genes, together with the A and B genes, is sufficient to convert leaves into petals.  相似文献   

2.
In Arabidopsis, different combinations of ABC organ identity proteins interact in the presence of SEPALLATA (SEP) proteins to regulate floral organ differentiation. Ectopic expression of SEP3 in combination with class A and B or B and C genes is sufficient to homeotically convert vegetative leaves into petal-like organs and bracts into stamen-like structures, respectively. Recently, it has been shown that the three MADS-box genes SEEDSTICK (STK), SHATTERPROOF1 (SHP1) and SHP2 act redundantly to control ovule identity. Protein interaction assays performed in yeast in combination with genetic studies demonstrated that these MADS-box factors only interact in the presence of SEP proteins to form complexes that determine ovule differentiation. Here, we address the question whether the ectopic co-expression of ovule identity proteins is sufficient to induce the homeotic conversion of vegetative leaves into carpel-like structures bearing ovules. We present the phenotypic characterization of Arabidopsis plants that ectopically express ovule identity factors under the regulation of the ethanol inducible gene expression system. These experiments indicate that the ectopic co-expression of SEP3 and SHP1 and/or STK is probably not sufficient to homeotically transform vegetative tissues into carpels with ovules. However, comparing the phenotypes obtained by ectopic expression of STK and/or SHP1 with or without SEP3 shows that co-expression of factors that are able to form complexes in yeast cause more extreme homeotic transformations, confirming the functional role of these complexes in vivo.  相似文献   

3.
The ABC model of flower organ identity is widely recognized as providing a framework for understanding the specification of flower organs in diverse plant species. Recent studies in Arabidopsis thaliana have shown that three closely related MADS-box genes, SEPALLATA1 (SEP1), SEP2 and SEP3, are required to specify petals, stamens, and carpels because these organs are converted into sepals in sep1 sep2 sep3 triple mutants. Additional studies indicate that the SEP proteins form multimeric complexes with the products of the B and C organ identity genes. Here, we characterize the SEP4 gene, which shares extensive sequence similarity to and an overlapping expression pattern with the other SEP genes. Although sep4 single mutants display a phenotype similar to that of wild-type plants, we find that floral organs are converted into leaf-like organs in sep1 sep2 sep3 sep4 quadruple mutants, indicating the involvement of all four SEP genes in the development of sepals. We also find that SEP4 contributes to the development of petals, stamens, and carpels in addition to sepals and that it plays an important role in meristem identity. These and other data demonstrate that the SEP genes play central roles in flower meristem identity and organ identity.  相似文献   

4.
New members of the floral organ identity AGAMOUS pathway   总被引:3,自引:0,他引:3  
The Arabidopsis floral organ identity gene AGAMOUS (AG) specifies stamen and carpel development as well as floral determinacy. Recent reports suggest that the HUA1, HUA2, HEN1 and HEN2 genes function redundantly as components of the AG pathway. The HUA1, HUA2, HEN1 and HEN2 genes encode nuclear proteins that perhaps play a role in RNA metabolism. The HUA and HEN genes function not only on the AG pathway, but also in vegetative development.  相似文献   

5.
6.
Studies In model plants showed that SEPALLATA (SEP) genes are required for the Identification of floral organs and the determination of floral meristems In Arabidopsis. In this paper a SEP homolog, TrSEP3, was Isolated from a China-specific species, Taihangla rupestrisi Yü et LI. Phylogenetlc analysis showed that the gene belongs to the SEP3-clade of SEP (previous AGL2) subfamily. In situ hybridization was used to reveal the potential functional specification, and the results showed that TrSEP3 expression was first observed in floral meristems and then confined to the floral primordla of the three inner whorls. In the matured flower, TrSEP3 was strongly expressed In the tips of pistils and weak In stamens and petals. The evolution force analysis shows that TrSEP3 might undergo a relaxed negative selection. These results suggested that TrSEP3 may not only function In determining the identity of floral merlstems and the primordia of three inner whorls, but also function In matured reproductive organs.  相似文献   

7.
SEPALLATA ( SEP ) MADS-box genes are required for the regulation of floral meristem determinacy and the specification of sepals, petals, stamens, carpels and ovules, specifically in angiosperms. The SEP subfamily is closely related to the AGAMOUS LIKE6 ( AGL6 ) and SQUAMOSA ( SQUA ) subfamilies. So far, of these three groups only AGL6 -like genes have been found in extant gymnosperms. AGL6 genes are more similar to SEP than to SQUA genes, both in sequence and in expression pattern. Despite the ancestry and wide distribution of AGL6 -like MADS-box genes, not a single loss-of-function mutant exhibiting a clear phenotype has yet been reported; consequently the function of AGL6 -like genes has remained elusive. Here, we characterize the Petunia hybrida AGL6 ( PhAGL6 , formerly called PETUNIA MADS BOX GENE4 / pMADS4 ) gene, and show that it functions redundantly with the SEP genes FLORAL BINDING PROTEIN2 ( FBP2 ) and FBP5 in petal and anther development. Moreover, expression analysis suggests a function for PhAGL6 in ovary and ovule development. The PhAGL6 and FBP2 proteins interact in in vitro experiments overall with the same partners, indicating that the two proteins are biochemically quite similar. It will be interesting to determine the functions of AGL6 -like genes of other species, especially those of gymnosperms.  相似文献   

8.
We have characterized the tomato (Lycopersicon esculentum Mill.) MADS box gene TM29 that shared a high amino acid sequence homology to the Arabidopsis SEP1, 2, and 3 (SEPALLATA1, 2, and 3) genes. TM29 showed similar expression profiles to SEP1, with accumulation of mRNA in the primordia of all four whorls of floral organs. In addition, TM29 mRNA was detected in inflorescence and vegetative meristems. To understand TM29 function, we produced transgenic tomato plants in which TM29 expression was down-regulated by either cosuppression or antisense techniques. These transgenic plants produced aberrant flowers with morphogenetic alterations in the organs of the inner three whorls. Petals and stamens were green rather than yellow, suggesting a partial conversion to a sepalloid identity. Stamens and ovaries were infertile, with the later developing into parthenocarpic fruit. Ectopic shoots with partially developed leaves and secondary flowers emerged from the fruit. These shoots resembled the primary transgenic flowers and continued to produce parthenocarpic fruit and additional ectopic shoots. Based on the temporal and spatial expression pattern and transgenic phenotypes, we propose that TM29 functions in floral organ development, fruit development, and maintenance of floral meristem identity in tomato.  相似文献   

9.
10.
The duplicated grass APETALA1/FRUITFULL (AP1/FUL) genes have distinct but overlapping patterns of expression, suggesting their discrete roles in transition to flowering, specification of spikelet meristem identity and specification of floral organ identity. In this study, we analyzed the expression patterns and functions of four AP1/FUL paralogs (BdVRN1, BdFUL2, BdFUL3 and BdFUL4) in Brachypodium distachyon, a model plant for the temperate cereals and related grasses. Among the four genes tested, only BdVRN1 could remember the prolonged cold treatment. The recently duplicated BdVRN1 and BdFUL2 genes were expressed in a highly consistent manner and ectopic expressions of them caused similar phenotypes such as extremely early flowering and severe morphological alterations of floral organs, indicating their redundant roles in floral transition, inflorescence development and floral organ identity. In comparison, ectopic expressions of BdFUL3 and BdFUL4 only caused a moderate early flowering phenotype, suggesting their divergent function. In yeast two‐hybrid assay, both BdVRN1 and BdFUL2 physically interact with SEP proteins but only BdFUL2 is able to form a homodimer. BdVRN1 also interacts weakly with BdFUL2. Our results indicate that, since the separation of AP1/FUL genes in grasses, the process of sub‐ or neo‐functionalization has occurred and paralogs function redundantly and/or separately in flowering competence and inflorescence development.  相似文献   

11.
12.
In Arabidopsis, mutations in the Pc-G gene CURLY LEAF (CLF) give early flowering plants with curled leaves. This phenotype is caused by mis-expression of the floral homeotic gene AGAMOUS (AG) in leaves, so that ag mutations largely suppress the clf phenotype. Here, we identify three mutations that suppress clf despite maintaining high AG expression. We show that the suppressors correspond to mutations in FPA and FT, two genes promoting flowering, and in SEPALLATA3 (SEP3) which encodes a co-factor for AG protein. The suppression of the clf phenotype is correlated with low SEP3 expression in all case and reveals that SEP3 has a role in promoting flowering in addition to its role in controlling floral organ identity. Genetic analysis of clf ft mutants indicates that CLF promotes flowering by reducing expression of FLC, a repressor of flowering. We conclude that SEP3 is the key target mediating the clf phenotype, and that the antagonistic effects of CLF target genes masks a role for CLF in promoting flowering.  相似文献   

13.
During Arabidopsis flower development a set of homeotic genes plays a central role in specifying the distinct floral organs of the four whorls, sepals in the outermost whorl, and petals, stamens, and carpels in the sequentially inner whorls. The current model for the identity of the floral organs includes the SEPALLATA genes that act in combination with the A, B and C genes for the specification of sepals, petals, stamens and carpels. According to this new model, the floral organ identity proteins would form different complexes of proteins for the activation of the downstream genes. We show that the presence of SEPALLATA proteins is needed to activate the AG downstream gene SHATTERPROOF2, and that SEPALLATA4 alone does not provide with enough SEPALLATA activity for the complex to be functional. Our results suggest that CAULIFLOWER may be part of the protein complex responsible for petal development and that it is fully required in the absence of APETALA1 in 35S::SEP3 plants. In addition, genetic and molecular experiments using plants constitutively expressing SEPALLATA3 revealed a new role of SEPALLATA3 in activating other B and C function genes. We molecularly prove that the ectopic expression of SEPALLATA3 is sufficient to ectopically activate APETALA3 and AGAMOUS. Remarkably, plants that constitutively express both SEPALLATA3 and LEAFY developed ectopic petals, carpels and ovules outside of the floral context.  相似文献   

14.
Dong ZC  Zhao Z  Liu CW  Luo JH  Yang J  Huang WH  Hu XH  Wang TL  Luo D 《Plant physiology》2005,137(4):1272-1282
Floral patterning in Papilionoideae plants, such as pea (Pisum sativum) and Medicago truncatula, is unique in terms of floral organ number, arrangement, and initiation timing as compared to other well-studied eudicots. To investigate the molecular mechanisms involved in the floral patterning in legumes, we have analyzed two mutants, proliferating floral meristem and proliferating floral organ-2 (pfo-2), obtained by ethyl methanesulfonate mutagenesis of Lotus japonicus. These two mutants showed similar phenotypes, with indeterminate floral structures and altered floral organ identities. We have demonstrated that loss of function of LjLFY and LjUFO/Pfo is likely to be responsible for these mutant phenotypes, respectively. To dissect the regulatory network controlling the floral patterning, we cloned homologs of the ABC function genes, which control floral organ identity in Arabidopsis (Arabidopsis thaliana). We found that some of the B and C function genes were duplicated. RNA in situ hybridization showed that the C function genes were expressed transiently in the carpel, continuously in stamens, and showed complementarity with the A function genes in the heterogeneous whorl. In proliferating floral meristem and pfo-2 mutants, all B function genes were down-regulated and the expression patterns of the A and C function genes were drastically altered. We conclude that LjLFY and LjUFO/Pfo are required for the activation of B function genes and function together in the recruitment and determination of petals and stamens. Our findings suggest that gene duplication, change in expression pattern, gain or loss of functional domains, and alteration of key gene functions all contribute to the divergence of floral patterning in L. japonicus.  相似文献   

15.
Li J  Jia D  Chen X 《The Plant cell》2001,13(10):2269-2282
Stamen and carpel identities are specified by the combinatorial activities of several floral homeotic genes, APETALA3, PISTILLATA, AGAMOUS (AG), SEPALLATA1 (SEP1), SEPALLATA2 (SEP2), and SEPALLATA3 (SEP3), all of which code for MADS domain DNA binding proteins. AG and the SEP genes also control floral determinacy. HUA1 and HUA2 were identified previously as regulators of stamen and carpel identities and floral determinacy because the recessive hua1-1 or hua2-1 allele affected these processes in plants with a lower dosage of functional AG (either homozygous for the weak ag-4 allele or heterozygous for the strong ag-1 allele). HUA2 was cloned previously and shown to code for a novel protein. We isolated the HUA1 gene using a map-based approach and show that it encodes a protein with six CCCH-type zinc finger motifs that is also found in yeast, Caenorhabditis elegans, Drosophila melanogaster, and mammalian proteins. Several such genes from invertebrates and mammals are known to play key regulatory roles in development. Therefore, HUA1 are another example of non-MADS domain proteins involved in organ identity specification. We demonstrated that HUA1 binds ribohomopolymers, preferentially poly rU and poly rG, but not double-stranded DNA in vitro. This finding suggests that HUA1, like several mammalian CCCH zinc finger proteins, is an RNA binding protein. Therefore, HUA1 likely participates in a new regulatory mechanism governing flower development.  相似文献   

16.
17.
18.
19.
Evolutionary dynamics of genes controlling floral development   总被引:1,自引:0,他引:1  
Advances in the understanding of floral developmental genetics in model species such as Arabidopsis continue to provide an important foundation for comparative studies in other flowering plants. In particular, floral organ identity genes are the focus of many projects that are addressing both ancient and recent evolutionary questions. Expanded analyses of the evolution of these gene lineages have highlighted the dynamic nature of the gene birth-and-death process, and may have significant implications for the evolution of genetic pathways. Crucial functional studies of floral organ identity genes in diverse taxa are allowing the first real insight into the conservation of gene function, while findings on the genetic control of organ elaboration offer to open up new avenues for investigation. Taken together, these trends show that the field of floral developmental evolution continues to make significant progress towards elucidating the processes that have shaped the evolution of flower development and morphology.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号