首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tyrosinase is a type 3 copper enzyme with great potential for production of commercially valuable diphenols from monophenols. However, the use of tyrosinase is limited by its further oxidation of diphenols to quinones. We recently determined the structure of the Bacillus megaterium tyrosinase revealing a residue, V218, which we proposed to take part in positioning of substrates within the active site. In the structure of catechol oxidase from Ipomoea batatas, the lack of monophenolase activity was attributed to the presence of F261 near CuA. Consequently, we engineered two variants, V218F and V218G. V218F was expected to have a decreased monophenolase activity, due to the bulky residue extending into the active site. Surprisingly, both V218F and V218G exhibited a 9- and 4.4-fold higher monophenolase/diphenolase activity ratio, respectively. X-ray structures of variant V218F display a flexibility of the phenylalanine residue along with an adjacent histidine, which we propose to be the source of the change in activity ratio.  相似文献   

2.
Tyrosinase is involved in the synthesis of melanin in the skin and hair as well as neuromelanin in the brain. This rate limiting enzyme catalyzes two critical steps (reactions) in melanogenesis; the hydroxylation of tyrosine to form DOPA and the subsequent oxidation of DOPA into dopaquinone. Several new aminophenol derivatives have been synthesized based on structure–activity relationship studies of N-(4-hydroxyphenyl)retinamide (1), a derivative of retinoic acid. In order to find new tyrosinase inhibitors, we investigated the effects of these p-aminophenols, including p-decylaminophenol (3), on the activity of mushroom tyrosinase. Compound 3 was the most potent agent, showing significant inhibition as compared with control. The inhibitory effects of 3 on tyrosinase activities were greater than seen with kojic acid, a well-known potent inhibitor of tyrosinase activity, which also causes adverse effects, including rash and dermatitis. A Lineweaver–Burk kinetic analysis of inhibition showed that 3 suppresses tyrosinase activity in a non-competitive fashion for both substrates, tyrosine and DOPA. These results suggest that 3 might be a useful alternative to kojic acid as a tyrosinase inhibitor.  相似文献   

3.
Effects of hydroxystilbene derivatives on tyrosinase activity   总被引:6,自引:0,他引:6  
Synthesis of melanin starts from the conversion of L-tyrosine to 3,4-dihydroxyphenylalanine (L-dopa) and then the oxidation of L-dopa yields dopaquinone by tyrosinase. Therefore, tyrosinase inhibitors have been established as important constituents of depigmentation agents. Recently, polyhydroxystilbene compounds, which are trans-resveratrol (3,4('),5-trihydroxy-trans-stilbene) analogs, have been demonstrated as potent tyrosinase inhibitors. However, their detailed inhibitory mechanisms are not clearly understood. In the present study, a variety of synthesized hydroxystilbene compounds were tested for their inhibitory effects against murine tyrosinase activity. The inhibitory potencies of the hydroxy-trans-stilbene compounds were remarkably elevated by increasing number of phenolic hydroxy substituents. Methylated hydroxy-trans-stilbene lost the inhibitory activity. Furthermore, hydrogenated hydroxystilbene or hydroxy-cis-stilbene exerted little or no inhibitory effect compared with hydroxy-trans-stilbene on tyrosinase activity. The structure-activity relationships demonstrated in the present study suggest that the phenolic hydroxy groups and trans-olefin structure of the parent stilbene skeleton contribute to the inhibitory potency of hydroxystilbene for tyrosinase activity.  相似文献   

4.
Mushroom tyrosinase (EC 1.14.18.1) is a copper containing oxidase that catalyzes both the hydroxylation of tyrosine into o-diphenols and the oxidation of o-diphenols into o-quinones. In the present study, the kinetic assay was performed in air-saturated solutions and the kinetic behavior of this enzyme in the oxidation of L-tyrosine and L-DOPA has been studied. The effects of cupferron on the monophenolase and diphenolase activity of mushroom tyrosinase have been studied. The results show that cupferron can inhibit both monophenolase and diphenolase activity of mushroom tyrosinase. The lag phase of tyrosine oxidation catalyzed by the enzyme was obviously lengthened and the steady-state activity of the enzyme decreased sharply. Cupferron can lead to reversible inhibition of the enzyme, possibly by chelating copper at the active site of the enzyme. The IC(50) value was estimated as 0.52 microM for monophenolase and 0.84 microM for diphenolase. A kinetic analysis shows that the cupferron is a competitive inhibitor for both monophenolase and diphenolase. The apparent inhibition constant for cupferron binding with free enzyme has been determined to be 0.20 microM for monophenolase and 0.48 microM for diphenolase.  相似文献   

5.
6.
Tyrosinase shows a lag period in its action on monophenols (l-tyrosine). We propose an approximate analytical solution for the lag period, which fulfils the dependences with regard to initial enzyme concentration, and initial monophenol concentration. Furthermore, from a study of the dependences of the lag period on these variables, we can determine experimentally the o-diphenol concentration in the steady state. The Michaelis constant of the o-diphenol in the presence of the monophenol can be determined from the relationship between the o-diphenol concentration in the steady state and the initial monophenol concentration, taking into consideration the experimentally calculated Michaelis constant for the monophenol substrate. Although this Michaelis constant is much lower than the Michaelis constant for diphenol in the absence of monophenol, the binding site is the same. A kinetic analysis of the action mechanism of tyrosinase explains this difference in the values of the Michaelis constants.  相似文献   

7.
Flemingia philippinensis is used as a foodstuff or medicinal plant in the tropical regions of China. The methanol (95%) extract of the roots of this plant showed potent tyrosinase inhibition (80% inhibition at 30 μg/ml). Activity-guided isolation yielded six polyphenols that inhibited both the monophenolase (IC50 = 1.01–18.4 μM) and diphenolase (IC50 = 5.22–84.1 μM) actions of tyrosinase. Compounds 16 emerged to be three new polyphenols and three known flavanones, flemichin D, lupinifolin and khonklonginol H. The new compounds (13) were identified as dihydrochalcones which we named fleminchalcones (A–C), respectively. The most potent inhibitor, dihydrochalcone (3) showed significant inhibitions against both the monophenolase (IC50 = 1.28 μM) and diphenolase (IC50 = 5.22 μM) activities of tyrosinase. Flavanone (4) possessing a resorcinol group also inhibited monophenolase (IC50 = 1.79 μM) and diphenolase (IC50 = 7.48 μM) significantly. In kinetic studies, all isolated compounds behaved as competitive inhibitors. Fleminchalcone A was found to have simple reversible slow-binding inhibition against monophenolase.  相似文献   

8.
This study explains the action of compounds such as 6-tetrahydrobiopterin, (6BH4) and 6,7-dimethyltetrahydrobiopterin (6,7-di-CH3BH4) on the monophenolase and diphenolase activities of tyrosinase. These reductants basically act by reducing the o-quinones, the reaction products, to o-diphenol. In the case of the diphenolase activity a lag period is observed until the reductant is depleted; then the system reaches the steady-state. In the action of the enzyme on monophenol substrates, when the reductant concentration is less than that of the o-diphenol necessary for the steady-state to be reached, the system undergoes an apparent activation since, in this way, the necessary concentration of o-diphenol will be reached more rapidly. However, when the reductant concentration is greater than that of the o-diphenol necessary for the steady-state to be reached, the lag period lengthens and is followed by a burst, by means of which the excess o-diphenol is consumed, the steady-state thus taking longer to be reached. Moreover, in the present kinetic study, we show that tyrosinase is not inhibited by an excess of monophenol, although, to confirm this, the system must be allowed to pass from the transition state and enter the steady-state, which is attained when a given amount of o-diphenol has accumulated in the medium.  相似文献   

9.
Tyrosinase (EC 1.14.18.1) catalyzes both the hydroxylation of tyrosine into o-diphenols and the oxidation of o-diphenols into o-quinones that form brown or black pigments. In the present paper, the effects of Cefazolin and Cefodizime on the activity of mushroom tyrosniase have been studied. The results showed that the Cephalosporin antibacterial drugs (Cefazolin and Cefodizime) could inhibit both monophenolase activity and diphenolase activity of the enzyme. For the monophenolase activity, Both Cefazolin and Cefodizime could lengthen the lag time and decrease the steady-state activities, and the IC50 values were estimated as 7.0 mM and 0.13 mM for monophenolase activity, respectively. For the diphenolase activity, the inhibitory capacity of Cefodizime was obviously stronger than that of Cefazolin, and the IC50 values were estimated as 0.02 mM and 0.21 mM, respectively. Kinetic analyses showed that inhibition by both compounds was reversible and their mechanisms were competitive and mixed-type, respectively. Their inhibition constants were also determined and compared. The research may offer a lead for designing and synthesizing novel and effective tyrosinase inhibitors and also under the application field of Cephalosporins.  相似文献   

10.
The concise synthesis of rhododendrol glycosides 38, which are novel derivatives of (+)-epirhododendrin (1) and (−)-rhododendrin (2), has been achieved in six steps from benzaldehyde 9. The key reactions include aldol condensation and trichloroacetimidate glycosylation. From biological studies, it has been determined that synthetic derivatives of 1 and 2 possess potent tyrosinase inhibitory activity. Particularly, the inhibitory activity of cellobioside 8 (IC50 = 1.51 μM) is six times higher than that of kojic acid. The R-epimers (4, 6, and 8) possessed more potent activity than the corresponding S-epimers (3, 5, and 7), indicating that tyrosinase inhibitory activity is significantly governed by stereochemistry of rhododendrol glycosides.  相似文献   

11.
In the screening of natural products for the development as cosmetic ingredients, the EtOAc-soluble fraction of Humulus japonicus showed tyrosinase inhibitory activity. HPLC-MS/MS coupled online tyrosinase assay of EtOAc-soluble fraction of H. japonicus characterized the twenty-eight constituents including two unknown ones and their tyrosinase inhibitory activity. Fractionation of H. japonicus using various chromatographic techniques yielded thirty-eight compounds. The chemical structures of isolated compounds were identified by spectroscopic analysis. As characterized by HPLC-MS/MS analysis, we isolated twenty-four predicted compounds and further identified two unknown ones, named humulusides A (1) and B (2). Additional ten compounds were also identified by purification. Tyrosinase inhibitory activity of isolated compounds were evaluated, which was closely correlated with the results from HPLC-MS/MS coupled online tyrosinase assay. Consistent with predicted data, two major compounds, trans-N-coumaroyltyramine (14) and cis-N-coumaroyltyramine (15) showed tyrosinase inhibition with IC50 values of 40.6 and 36.4?μM. Taken together, H. japonicus is suggested as whitening ingredient in cosmetic products. In addition, HPLC-MS/MS coupled tyrosinase assay is powerful tool for predicting active compounds with short time and limited amounts, although identification of new compounds and verification of predicted data are also needs to be demonstrated by further experiment.  相似文献   

12.

Background

Excessive melanin production and accumulation are characteristics of a large number of skin diseases, including melasma, and post-inflammatory hyperpigmentation. During our on-going search for new agents with an inhibitory effect on tyrosinase, we synthesized a new type of tyrosinase inhibitor, 4-(thiazolidin-2-yl)benzene-1,2-diol (MHY-794), which directly inhibits mushroom tyrosinase.

Methods

The inhibitory effect of MHY-794 on tyrosinase activity and nitric oxide (NO) scavenging activity was evaluated in cell free system. Additional experiments were performed using B16F10 melanoma cells to demonstrate the effects of MHY-794 in vitro. HRM2 hairless mice were used to evaluate anti-melanogenic effects of MHY-794 in vivo.

Results

MHY-794 effectively inhibited mushroom tyrosinase activity in cell free system. In silico docking simulation also supported the inhibitory effects of MHY-794 on mushroom tyrosinase. MHY-794 also proved to be effective at scavenging nitric oxide (NO), which serves as an important modulator in the melanogenesis signaling pathway. In addition, MHY-794 effectively inhibited SNP (NO donor)-induced melanogenesis by directly inhibiting tyrosinase and diminishing NO-mediated melanogenesis signaling in B16 melanoma cells. The anti-melanogenic effects of MHY-794 were further confirmed in HRM2 hairless mice. Ultraviolet light (UV) significantly up-regulated NO-mediated melanogenesis signaling in HRM2 hairless mice, but MHY-794 effectively inhibited both melanogenesis and diminished UV-induced NO-signaling.

Conclusions

Our results indicate that MHY-794 is highly effective at inhibiting NO-mediated melanogenesis in vitro and in vivo by direct NO scavenging and directly inhibiting tyrosinase activity, and suggest that MHY-794 be considered a new developmental candidate for the treatment of hyper-pigmentation disorders.

General significance

MHY-794, which showed great efficacy on NO-mediated melanogenesis by direct NO scavenging as well as direct inhibition of tyrosinase catalytic activity, might be utilized for the development of a new candidate for treatment of the hyper-pigmentation disorders.  相似文献   

13.
Contradictory reports on the behaviour of hydroquinone as a tyrosinase substrate are reconciled in terms of the ability of the initially formed ortho-quinone to tautomerise to the thermodynamically more stable para-quinone isomer. Oxidation of phenols by native tyrosinase requires activation by in situ formation of a catechol formed via an enzyme generated ortho-quinone. In the special case of hydroquinone, catechol formation is precluded by rapid tautomerisation of the ortho-quinone precursor to catechol formation.  相似文献   

14.
In order to unify and generalize, we define the International Units used to express the monophenolase and diphenolase activity of mushroom tyrosinase acting on different monophenol/diphenol pairs and establish a quantitative relation. Similarly, the activity units to express tyrosinase activity proposed by suppliers are discussed and compared with the above International Units. Lastly, we study the relation between International Units of diphenolase activity and of monophenolase activity for other biological sources of tyrosinase.  相似文献   

15.
Eighteen constituents, including nine new compounds, were isolated from the bee pollen of Quercus mongolica. The structures of the new compounds were established on the basis of combined spectroscopic analysis. Structurally, the nine new compounds are polyamine derivatives with phenolic moieties which were assigned as one putrescine derivative, mogolicine A (2), seven spermidine derivatives, mongolidines A-G (35, 8, 12, 14, 17) and one spermine derivative, mogoline A (18). Evaluation of the biological activity of isolated compounds revealed that the polyamine derivatives with coumaroyl and caffeoyl moieties showed tyrosinase inhibition with IC50 values of 19.5–85.8 μM; however, the addition of a methoxy group to phenolic derivatives reduced the inhibitory activity.  相似文献   

16.
Synthesis of a focussed library of trans-stilbene compounds through Wittig and other base catalysed condensation reactions is presented. The synthesized stilbenes were screened for their inhibitory potential against murine tyrosinase activity to explore the structure activity relationship (SAR). Presence of electron withdrawing group (–CN) at the double bond and hydroxyl group or halogen atom especially at para-position on the aromatic rings was found to significantly elevate the inhibitory activity. Among all the compounds screened, compounds 2, 6, 8, 10, 11, 15 and 21 were found to exhibit appreciable inhibitory activity. Compound 21 ((E)-2,3-bis(4-Hydroxyphenyl)acryonitrile) was found to be the most active with an IC50 value of 5.06 μM which is less than half of the value 10.78 μM observed for resveratrol (common standard used in murine tyrosinase activity studies) under similar conditions. The results obtained from the present study reveal structural/functional group sensitivity for the tyrosinase inhibitory activity of stilbenoid moieties and are expected to be very helpful for the design and synthesis of novel, selective and effective tyrosinase inhibitors.  相似文献   

17.
Tyrosinase (EC 1.14.18.1) catalyzes both the hydroxylation of tyrosine into o-diphenols and the oxidation of o-diphenols into o-quinones which form brown or black pigments. Here, the inhibitory effects of 4-vinylbenzaldehyde and 4-vinylbenzoic acid on the activity of mushroom tyrosinase have been investigated. The results showed that both 4-vinylbenzaldehyde and 4-vinylbenzoic acid could inhibit both monophenolase activity and diphenolase activity of the enzyme. For the monophenolase activity, 4-vinylbenzoic acid could lengthen the lag time, but 4-vinylbenzaldehyde could not. Both 4-vinylbenzaldehyde and 4-vinylbenzoic acid decreased the steady-state activity, and the IC50 values were estimated as 93?μM and 3.0?mM for monophenolase activity, respectively. For the diphenolase activity, the inhibitory capacity of 4-vinylbenzaldehyde was stronger than that of 4-vinylbenzoic acid, and the IC50 values were estimated as 23?μM and 0.33?mM, respectively. Kinetic analyses showed that inhibition by both compounds was reversible and their mechanisms were mixed-II type; their inhibition constants were also determined and compared.  相似文献   

18.
The inhibitory effects of oxyresveratrol, the aglycone of mulberroside A, on mushroom and cellular tyrosinase activities and melanin synthesis were evaluated. Mulberroside A and oxyresveratrol showed inhibitory activity against mushroom tyrosinase, with oxyresveratrol demonstrating a greater inhibitory effect than that of mulberroside A. Oxyresveratrol and mulberroside A strongly inhibited melanin production in Streptomyces bikiniensis and exhibited dose-dependent inhibition of tyrosinase activity and inhibition of melanin synthesis in B16F10 melanoma cells. However, the compounds exhibited nearly similar inhibitory effects on the activity of cellular tyrosinase and melanin synthesis in murine melanocytes. The inhibition of melanin synthesis by mulberroside A and oxyresveratrol was involved in suppressing the expression level of melanogenic enzymes, tyrosinase, tyrosinase-related protein-1 (TRP-1), and tyrosinase-related protein-2 (TRP-2). These results indicate that the inhibition rate of mushroom tyrosinase might not provide an accurate estimate of the inhibition rate of melanin synthesis in melanocytes.  相似文献   

19.
A series of tri-O-methylnorbergenin analogues 19 were synthesized and their antioxidant activities and inhibitory effects on tyrosinase were evaluated. Among tested analogues, compound 4 bearing cathechol moiety exhibited greater antioxidant activity and excellent inhibition on tyrosinase with IC50 value of 9.1 μM, comparable to that of corresponding positive controls. The inhibition mechanism analysis of compound 4 demonstrated that it was a mixed-type inhibitor on tyrosinase. These results suggest that these compounds may serve as a useful clue for further designing and development of novel potential tyrosinase inhibitors.  相似文献   

20.
Several novel N-substituted N-nitrosohydroxylamines were synthesized. They all inhibited mushroom tyrosinase, but the type of inhibition was different depending on the substituent. Some N-(mono- or dihydroxybenzyl)-N-nitrosohydroxylamines exhibited uncompetitive inhibition with respect to L-dopa. Among them, compound 6 was also a competitive inhibitor with respect to oxygen. This observation suggests that another interaction by the meta- or para-hydroxyl group might stabilize the binding of the inhibitor to the enzyme through the oxygen binding site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号