首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Derelict ships are commonly deployed as artificial reefs in the United States, mainly for recreational fishers and divers. Despite their popularity, few studies have rigorously examined fish assemblages on these structures and compared them to natural reefs. Six vessel-reefs off the coast of southeast Florida were censused quarterly (two ships per month) to characterize their associated fish assemblages. SCUBA divers used a non-destructive point-count method to visually assess the fish assemblages over 13- and 12-month intervals (March 2000 to March 2001 and March 2002 to February 2003). During the same intervals, fish assemblages at neighboring natural reefs were also censused. A total of 114,252 fishes of 177 species was counted on natural and vessel-reefs combined. Mean fish abundance and biomass were significantly greater on vessel-reefs in comparison to surrounding natural reef areas. Haemulidae was the most abundant family on vessel-reefs, where it represented 46% of total fish abundance. The most abundant family on natural reefs was Labridae, where it accounted for 24% of total fish abundance. Mean species richness was significantly greater on vessel-reefs than neighboring natural reefs and also differed among vessel-reefs. Both mean fish abundance and mean species richness were not significantly different between natural reefs neighboring vessel-reefs and natural reefs with no artificial structures nearby. This suggests the vessel-reefs are not, in general, attracting fish away from neighboring natural reefs in our area. Additionally, economically important fish species seem to prefer vessel-reefs, as there was a greater abundance of these species on vessel-reefs than surrounding natural reef areas. Fish assemblage structure on natural versus artificial reefs exhibited a low similarity (25.8%). Although no one species was responsible for more than 6% of the total dissimilarity, fish assemblage trophic structure differed strikingly between the two reef types. Planktivores dominated on vessel-reefs, accounting for 54% of the total abundance. Conversely, planktivores only made up 27% of total abundance on natural reefs. The results of this study indicate vessel-reef fish assemblages are unique and that these fishes may be utilizing food resources and habitat characteristics not accessible from or found at natural reefs in our area. Production may also be occurring at vessel-reefs as the attraction of fish species from nearby natural reefs seems to be minimal. Electronic supplementary material Supplementary material is available for this article at and accessible for authorised users  相似文献   

2.
Density and biomass of fishes, from shallow rocky and soft bottom habitats on the Swedish west coast, showed large seasonal variation with low values in winter and spring and with peaks in June. Season was also the most important factor determining the fish assemblage structure. Within season, however, there was a clear separation in assemblage structure between rocky-and soft-bottom habitats. There were significantly higher total fish abundances and biomasses during night compared with day catches. On soft bottoms density and biomass of fishes decreased with increasing depth, but no such pattern was seen in rocky habitats indicating that the distribution of fishes was related to vegetation cover. Altogether, 53 fish species were recorded of which 30 were common to both habitats. Species richness was similar on rocky and soft bottoms. Of the 10 most abundant species found in rocky habitats four belonged to the Labridae and three to the Gadidae. The fish assemblage on soft bottoms were of a more mixed nature with representatives among the 10 dominants from six families (Clupeidae, Cottidae, Gadidae, Gobiidae, Labridae and Pleuronectidae). When ranking the 10 dominant fish species on rocky bottoms according to biomass c . 50% of the mass was Labridae, 19% Gadidae and 13% Cottidae. In soft bottom habitats, fish biomass was mainly distributed between six families. Pleuronectidae and Gadidae were dominant and each made up 25% of the biomass, whereas Labridae only contributed 4% of the fish mass. It is concluded that the fish assemblage in rocky habitats is dominated by permanent non-commercial species (63% of biomass), whereas soft bottoms mainly function as nurseries for juvenile fishes and as feeding grounds for seasonal migrants of commercial species (80% of biomass).  相似文献   

3.
Understanding the interconnectivity of organisms among different habitats is a key requirement for generating effective management plans in coastal ecosystems, particularly when determining component habitat structures in marine protected areas. To elucidate the patterns of habitat use by fishes among coral, seagrass, and mangrove habitats, and between natural and transplanted mangroves, visual censuses were conducted semiannually at two sites in the Philippines during September and March 2010–2012. In total, 265 species and 15,930 individuals were recorded. Species richness and abundance of fishes were significantly higher in coral reefs (234 species, 12,306 individuals) than in seagrass (38 species, 1,198 individuals) and mangrove (47 species, 2,426 individuals) habitats. Similarity tests revealed a highly significant difference among the three habitats. Fishes exhibited two different strategies for habitat use, inhabiting either a single (85.6% of recorded species) or several habitats (14.4%). Some fish that utilized multiple habitats, such as Lutjanus monostigma and Parupeneus barberinus, showed possible ontogenetic habitat shifts from mangroves and/or seagrass habitats to coral reefs. Moreover, over 20% of commercial fish species used multiple habitats, highlighting the importance of including different habitat types within marine protected areas to achieve efficient and effective resource management. Neither species richness nor abundance of fishes significantly differed between natural and transplanted mangroves. In addition, 14 fish species were recorded in a 20-year-old transplanted mangrove area, and over 90% of these species used multiple habitats, further demonstrating the key role of transplanted mangroves as a reef fish habitat in this region.  相似文献   

4.
马鞍列岛多种生境中鱼类群聚的昼夜变化   总被引:4,自引:0,他引:4  
汪振华  王凯  章守宇 《生态学报》2011,31(22):6912-6925
为了解岛礁水域鱼类群聚的昼夜变化特征,以便更全面地设计采样方法和掌握采样的时间尺度,于2009年9月对马鞍列岛7种生境进行了共计24网次的刺网昼夜采样,结合排序和聚类方法,从种类组成、相对生物量和丰度、种类丰富度、多样性和相似性等方面对研究海域鱼类群聚特征的昼夜变化作了探讨.在采获的55种鱼类中,昼夜出现的分别为41和46种,数量差别不大,但其昼夜组成却随栖息水层的变化而不同,底层鱼类更趋向于夜间在硬相生境集群活动;近底层鱼类的昼夜集群随生境变化而变化,在同一生境中既有偏向白天也有趋向夜间的;中上层鱼类更多地出现在白天的人工生境(AH).AH白天的丰度渔获率显著大于晚上,而天然生境(NH)昼夜差别不大;生物量渔获率无论NH还是AH皆无显著昼夜差异.具体到种类,仅有小黄鱼Larimichthys polyactis和赤鼻棱鳗Thryssa kammalensis等少数种类的数量在AH有显著的昼夜差别,其他多数种类虽然昼夜的出现率大多有别,但渔获率昼夜差异皆不明显.多样性差异更多的表现在不同生境之间,而同一生境的昼夜差异往往不甚显著.各个生境中鱼类的昼夜种类交替现象非常明显,形成了以褐菖(鲐)Sebastiscus marmoratus和鳗鲇Plotosus anguillaris为代表的夜间优势类群为主的硬相生境群聚格局、以丝背细鳞鲀Stephanolepis cirrhifer和细刺鱼Microcanthus strigatus为代表的白天优势类群为主的硬相生境群聚格局以及缺乏底层优势类群、以石首鱼科鱼类为代表的近底层鱼类为绝对优势类群的软相生境群聚格局.因此,采用被动性渔具在近岸典型生境进行鱼类等相关生物调查时,应使采样时间覆盖昼夜两个时段,且至少保证24h.  相似文献   

5.
Two hypotheses were tested: that the artificial sandbar opening decreases the richness, diversity and abundance of fishes and alters the fish composition in floodplain ponds; that the salinity variations influence fish richness, diversity, abundance, as well as composition. Results suggest that artificial sandbar openings did not reduce the richness or diversity of freshwater fishes in southern Brazil floodplain ponds. Nevertheless, this process causes an increase in salinity, which determines significant differences in species composition between natural and managed areas. In this sense, the artificial sandbar opening must be considered with caution, since the area of study is one of the most important conservation units in wetland systems of southern Brazil.  相似文献   

6.
Anthropogenic habitats are increasingly prevalent in coastal marine environments. Previous research on sessile epifauna suggests that artificial habitats act as a refuge for nonindigenous species, which results in highly homogenous communities across locations. However, vertebrate assemblages that live in association with artificial habitats are poorly understood. Here, we quantify the biodiversity of small, cryptic (henceforth “cryptobenthic”) fishes from marine dock pilings across six locations over 35° of latitude from Maine to Panama. We also compare assemblages from dock pilings to natural habitats in the two southernmost locations (Panama and Belize). Our results suggest that the biodiversity patterns of cryptobenthic fishes from dock pilings follow a Latitudinal Diversity Gradient (LDG), with average local and regional diversity declining sharply with increasing latitude. Furthermore, a strong correlation between community composition and spatial distance suggests distinct regional assemblages of cryptobenthic fishes. Cryptobenthic fish assemblages from dock pilings in Belize and Panama were less diverse and had lower densities than nearby reef habitats. However, dock pilings harbored almost exclusively native species, including two species of conservation concern absent from nearby natural habitats. Our results suggest that, in contrast to sessile epifaunal assemblages on artificial substrates, artificial marine habitats can harbor diverse, regionally characteristic assemblages of vertebrates that follow macroecological patterns that are well documented for natural habitats. We therefore posit that, although dock pilings cannot function as a replacement for natural habitats, dock pilings may provide cost‐effective means to preserve native vertebrate biodiversity, and provide a habitat that can be relatively easily monitored to track the status and trends of fish biodiversity in highly urbanized coastal marine environments.  相似文献   

7.
Artificial reefs are often promoted as mitigating human impacts in coastal ecosystems and enhancing fisheries; however, evidence supporting their benefits is equivocal. Such structures must be compared with natural reefs in order to assess their performance, but past comparisons typically examined artificial structures that were too small, or were immature, relative to the natural reefs. We compared coral and fish communities on two large (>400,000 m3) and mature (>25 year) artificial reefs with six natural coral patches. Coral cover was higher on artificial reefs (50%) than in natural habitats (31%), but natural coral patches contained higher species richness (29 vs. 20) and coral diversity (H′ = 2.3 vs. 1.8). Multivariate analyses indicated strong differences between coral communities in natural and artificial habitats. Fish communities were sampled seasonally for 1 year. Multivariate fish communities differed significantly among habitat types in the summer and fall, but converged in the winter and spring. Univariate analysis indicated that species richness and abundance were stable throughout the year on natural coral patches but increased significantly in the summer on artificial reefs compared with the winter and spring, explaining the multivariate changes in community structure. The increased summer abundance on artificial reefs was mainly due to adult immigration. Piscivores were much more abundant in the fall than in the winter or spring on artificial reefs, but had low and stable abundance throughout the year in natural habitats. It is likely that the decreased winter and spring abundance of fish on the artificial reefs resulted from both predation and emigration. These results indicate that large artificial reefs can support diverse and abundant coral and fish communities. However, these communities differ structurally and functionally from those in natural habitats, and they should not be considered as replacements for natural coral and fish communities.  相似文献   

8.
Shifting and permanent cultivation, selective logging, cattle production and coffee plantations are among the most important factors in montane cloud forest conversion and disturbance. Although shaded-coffee plantations can contribute to the preservation of local species richness, abundance of organisms could be determined by habitat resource availability in agricultural landscapes. We compared abundance of Sturnira and Artibeus bats (Phyllostomidae, Stenodermatinae), in shade coffee plantations and disturbed cloud forest fragments, which represent habitats with different chiropterochorous plant density. We also investigated the relationship between bat species abundance and food plant richness, abundance and diversity. We captured 956 bats, 76% in cloud forest fragments and 24% in shaded coffee plantations. Abundance of Sturnira spp. (small bats) was greater in cloud forest than in coffee plantations, but Artibeus spp. (large bats) abundance was similar in both habitats. Chiropterochorous plant abundance was positively related with bat abundance for Sturnira spp., while chiropterochorous plant richness and diversity were negatively related for Artibeus spp. This suggests that frugivorous bats with different morphological and ecological characteristics respond differentially to anthropogenic activities. For landscape management purposes, the maintenance and augmentation of diverse food resources, for frugivorous bats with different foraging requirements in coffee plantations, will benefit the resilience of bats to modification of their natural habitat.  相似文献   

9.
坝上地区农田及两种恢复生境中蜘蛛多样性与群落特征   总被引:1,自引:0,他引:1  
蜘蛛是农田生态系统中重要的自然天敌,其生物多样性及群落特征直接决定了农田的害虫控制等生态系统服务功能质量。农田及其周边的恢复生境是蜘蛛重要的栖息地。本研究采用陷阱法,对河北省张家口市崇礼区871、1360、1635 m 3个海拔农田、自然恢复草地及人工修复林地的蜘蛛群落的物种组成、物种多样性和功能特征进行研究,分析不同恢复生境中蜘蛛群落特征。结果表明: 不同生境蜘蛛的物种多样性指数差异明显,人工修复林地蜘蛛的多度为124.3只,显著高于自然恢复草地(70.1)及农田(38.6)的蜘蛛多度;人工修复林地(16.3)与自然恢复草地(21.4)的物种丰富度没有显著差别,但均显著高于农田(8.9);人工修复林地(2.04)及自然恢复草地(2.05)的Shannon多样性指数差异不显著,且均显著高于农田(1.55)。3种生境的蜘蛛群落组成均具有显著差异;蜘蛛体长与蜘蛛捕猎类型呈正相关,大型蜘蛛倾向于通过捕猎获取食物;自然恢复草地与农田蜘蛛以游猎型为主,而人工修复林地倾向于拥有更多的结网型蜘蛛,高海拔地区的蜘蛛体积通常较小。自然恢复草地与人工修复林地均可以提升蜘蛛群落多样性,在区域生物多样性保护中起重要作用;不同生境蜘蛛群落组成出现了显著分化,即蜘蛛群落总体的功能特征发生改变和保留了部分生境特有种。2种恢复生境蜘蛛多样性指标优于农田生境,且2种恢复生境物种组成存在差异,均具有保护特有种的功能,研究结果对农田及区域尺度蜘蛛生物多样性保护与恢复具有指导意义。  相似文献   

10.
Anthropogenic landscapes are associated with biodiversity loss and large shifts in species composition and traits. These changes predict the identities of winners and losers of future global change, and also reveal which environmental variables drive a taxon's response to land use change. We explored how the biodiversity of native bee species changes across forested, agricultural, and urban landscapes. We collected bee community data from 36 sites across a 75,000 km2 region, and analyzed bee abundance, species richness, composition, and life‐history traits. Season‐long bee abundance and richness were not detectably different between natural and anthropogenic landscapes, but community phenologies differed strongly, with an early spring peak followed by decline in forests, and a more extended summer season in agricultural and urban habitats. Bee community composition differed significantly between all three land use types, as did phylogenetic composition. Anthropogenic land use had negative effects on the persistence of several life‐history strategies, including early spring flight season and brood parasitism, which may indicate adaptation to conditions in forest habitat. Overall, anthropogenic communities are not diminished subsets of contemporary natural communities. Rather, forest species do not persist in anthropogenic habitats, but are replaced by different native species and phylogenetic lineages preadapted to open habitats. Characterizing compositional and functional differences is crucial for understanding land use as a global change driver across large regional scales.  相似文献   

11.
The abundance of newly settled recruits of coral reef fishes was monitored at a total of 11 sites at two islands and two coastal locations in the central Philippines for a 20-month period (February 2008 to September 2009) that included two monsoon cycles. Recruitment occurred throughout the year. Most of the abundant species exhibited protracted recruitment seasons. This confirms the expectation of extended breeding of reef fishes at lower latitudes. The annual pattern of recruitment of reef fishes as a group was predictable. Annual fluctuations of sea surface temperature and wind strength largely explained the pattern. Rainfall, however, did not significantly influence the pattern of recruitment. Peaks in density and species richness of recruits occurred during the southwest monsoon and the second inter-monsoonal period of the year (July to October) when temperatures were highest and when most of the sites were sheltered from winds or when winds were weak. Conversely, lowest density and species richness were observed during the northeast monsoon (November to March) when temperatures were lowest and most sites were exposed to winds. The same pattern could also be seen in the recruitment of both damselfishes (Pomacentridae) and wrasses (Labridae), notwithstanding a tenfold difference in abundance of recruits between the two families. The pattern was fairly consistent across most sites, among most of the species that were examined, and between the 2 years that were sampled. This study is one of the few to provide insights into the influence of environmental factors on the recruitment patterns of fishes on Indo-Pacific coral reefs situated at lower latitudes.  相似文献   

12.
Aim We examined comparative data for cryptobenthic reef fishes to determine how variation in regional species richness relates to local species richness, abundance, and taxonomic and trophic composition, and to test whether systems with higher species richness exhibit finer habitat partitioning. Locations Lizard Island, Great Barrier Reef (GBR), Australia; Bahía de Loreto, Gulf of California (GoC), Mexico. Methods Cryptobenthic reef fish assemblages from four habitats (coral heads, rubble, and horizontal and vertical surfaces of boulders) were collected using clove oil. Differences in density, species richness and biomass were examined between regions and among habitats. Habitat associations were identified for each habitat/location based on multivariate ordination, and the statistical significance of patterns was tested using analysis of similarity (ANOSIM). In addition, the trophic group composition of the assemblages for both regions was examined. Results A total of 91 species in 20 families were recorded (GBR, 66 species; GoC, 25 species). Total and habitat species richness were higher on the GBR, whereas biomass was higher in the GoC. No difference in fish density between regions was found. Habitat division among assemblages was greater in the depauperate GoC. Only coral head associations proved to be distinctive on the GBR, whereas three sample groups were found in the GoC (coral heads, horizontal boulders and vertical boulders/rubble). Trophic composition in the two regions was markedly different, with omnivores dominating the GBR fauna and planktivores the GoC. Main conclusions A positive regional–local relationship in fish diversity was found between regions, but fish abundance in both regions remained similar. Contrary to expectations, habitat partitioning, at a community level, was greater in the depauperate GoC. Differences in trophic composition and patterns of habitat use appear to reflect the disparate history of the regions, whereas patterns of abundance may reflect the influence of fundamental relationships between size and abundance in communities. This study highlights the potential of reef faunas to conform to universal numerical trends while maintaining an ability to respond ecologically to local/evolutionary influences. The GoC fauna appears to be exceptionally vulnerable to natural and anthropogenic disturbance owing to the high numerical dominance of habitat‐specific species and to the limited potential for functional redundancy within the system.  相似文献   

13.
Most habitats in the Azores have undergone substantial land-use changes and anthropogenic disturbance during the last six centuries. In this study we assessed how the richness, abundance and composition of arthropod communities change with: (1) habitat type and (2) the surrounding land-use at different spatial scales. The research was conducted in Terceira Island, Azores. In eighty-one sites of four different habitat types (natural and exotic forests, semi-natural and intensively managed pastures), epigaeic arthropods were captured with pitfall traps and classified as endemic, native or introduced. The land-use surrounding each site was characterized within a radius ranging from 100 to 5000 m. Non-parametric tests were used to identify differences in species richness, abundance and composition between habitat types at different spatial scales. Endemic and native species were more abundant in natural forests, while introduced species were more abundant in intensively managed pastures. Natural forests and intensively managed pastures influenced arthropod species richness and composition at all spatial scales. Exotic forests and semi-natural pastures, however, influenced the composition of arthropod communities at larger scales, promoting the connectivity of endemic and native species populations. Local species richness, abundance and composition of arthropod communities are mostly determined by the presence of nearby natural forests and/or intensively managed pastures. However, semi-natural pastures and exotic forests seem to play an important role as corridors between natural forests for both endemic and native species. Furthermore, exotic forests may serve as a refuge for some native species.  相似文献   

14.
The present study investigated species richness, relative abundance, and short temporal variability of rockpool fish communities on the southwestern coast of Yaku-shima Island, northwestern Pacific. In total, 2,850 fish (total biomass approximately 3,400 g) representing 17 families and 54 species were collected from 16 rockpools from May 2009 to February 2010. Gobiidae (12 species), Blenniidae (10), Pomacentridae (6), and Labridae (5) were the dominant families; Blenniidae was the most abundant family (57.1 % of the total number of fish), followed by Gobiidae (30.1 %), Tripterygiidae (5.3 %), Labridae (3.2 %), and Pomacentridae (2.4 %). The Blenniidae accounted for more than 80.0 % of the community biomass. This dominance of Blenniidae and Gobiidae in the community reflects their diversity in the western Pacific and ability to adapt to rocky intertidal habitats. The mean density and species richness of rockpool fish decreased significantly in winter. This is attributed to a decrease in recruitment of transient and accidental visitor species into the rockpool environments, which in turn was due to a significant decline in water temperature in winter. However, mean diversity index (Simpson’s D) did not vary significantly across the seasons, because over 80.0 % of the total number of individuals in each season was from six common species (three blenniids, two gobiids, and a tripterygiid). It can be concluded that the community composition is generally stable over short time-scales. The biogeographic composition of this assemblage was compared with those of two other sites (cited from two past studies) in southern Japanese waters. These other sites were mostly composed of warm temperate species, with regard to the number of species and individuals, while tropical species were predominant in the assemblage at the southwestern coast of Yaku-shima Island. This result suggests that the warm Kuroshio Current has more influence on the Yaku-shima Island coastal fauna than it does on those of the other sites in southern Japanese waters.  相似文献   

15.
16.

Aim

Artificial coastal defence structures are proliferating in response to rising and stormier seas. These structures provide habitat for many species but generally support lower biodiversity than natural habitats. This is primarily due to the absence of environmental heterogeneity and water‐retaining features on artificial structures. We compared the epibiotic communities associated with artificial coastal defence structures and natural habitats to ask the following questions: (1) is species richness on emergent substrata greater in natural than artificial habitats and is the magnitude of this difference greater at mid than upper tidal levels; (2) is species richness greater in rock pools than emergent substrata and is the magnitude of this difference greater in artificial than natural habitats; and (3) in artificial habitats, is species richness in rock pools greater at mid than upper tidal levels?

Location

British Isles.

Methods

Standard non‐destructive random sampling compared the effect of habitat type and tidal height on epibiota on natural rocky shores and artificial coastal defence structures.

Results

Natural emergent substrata supported greater species richness than artificial substrata. Species richness was greater at mid than upper tidal levels, particularly in artificial habitats. Rock pools supported greater species richness than emergent substrata, and this difference was more pronounced in artificial than natural habitats. Rock pools in artificial habitats supported greater species richness at mid than upper tidal levels.

Main conclusions

Artificial structures support lower biodiversity than natural habitats. This is primarily due to the lack of habitat heterogeneity in artificial habitats. Artificial structures can be modified to provide rock pools that promote biodiversity. The effect of rock pool creation will be more pronounced at mid than upper tidal levels. The challenge now is to establish at what tidal height the effect of pools becomes negligible and to determine the rock pool dimensions for optimum habitat enhancement.
  相似文献   

17.
Diversity and similarity of butterfly communities were assessed in five different habitat types (from natural closed forest to agricultural lands) in the mountains of Tam Dao National Park, Vietnam for 3 years from 2002 to 2004. The line transect count was used to record species richness and abundance of butterfly communities in the different habitat types. For each habitat, the number of species and individuals, and indices of species richness, evenness and diversity of butterfly communities were calculated. The results indicated that species richness and abundance of butterfly communities were low in the natural closed forest, higher in the disturbed forest, highest in the forest edge, lower in the shrub habitat and lowest in the agricultural lands. The indices of species richness, evenness and diversity of butterfly communities were low in agricultural lands and natural closed forest but highest in the forest edge and shrub habitats. The families Satyridae and Amathusiidae have the greatest species richness and abundance in the natural closed forest, with a reduction in their species richness and abundance from the natural closed forest to the agricultural lands. Species composition of butterfly communities was different among five different habitat types (40%), was similar in habitats outside the forest (68%) and was similar in habitats inside the forest (63%). Diversity and abundance of butterfly communities are not different between the natural closed forest and the agriculture lands, but species composition changed greatly between these habitat types. A positive correlation between the size of species geographical distribution range and increasing habitat disturbance was found. The most characteristic natural closed forest species have the smallest geographical distribution range.  相似文献   

18.
Coprophilous beetles represent an abundant and rich group with critical importance in the functioning of terrestrial ecosystems. Most coprophagous beetles have a stenotopic distribution in relation to vegetation types. Because of this, they are usually very sensitive to environmental changes and are considered well suited as bioindicator organisms. The aim of this study was to analyze variations in coprophilous beetle assemblages in natural and anthropogenic habitats. Coprophilous beetle communities were sampled monthly for 1?year using pitfall traps baited with cow dung, in native xeric upland forests, 15-years-old plantations of Pinus elliottii and pastures in Sierra de Minas, Lavalleja, Uruguay. A total of 7,436 beetles were caught and identified to species or morphospecies level. The most abundant families were Aphodiidae, Scarabaeidae, and Staphylinidae. Differences in species richness, abundance, Shannon index, evenness, and dominance were detected between habitats. Abundances of most frequent families were significantly higher in both kinds of forests. Species richness and diversity of Aphodiidae and Staphylinidae were higher in forests, while Scarabaeidae showed the highest richness and diversity in pine plantations. Species composition significantly differed between habitats. Uroxys terminalis Waterhouse and Ataenius perforatus Harold typified the assemblages in native forests and pine plantations and also discriminated both communities because of their differential pattern of abundance between habitats. Typifying species in pastures were Onthophagus hirculus, Ateuchus robustus (Harold), and Ataenius platensis Blanchard. Habitat type had a strong effect on the coprophilous beetle community structure and composition.  相似文献   

19.
The extensive human-mediated modifications of shallow coastal habitats drastically alter selection regimes and may assist alien invasions. The preferential presence of a non-indigenous scleractinian coral (Oculina patagonica) on anthropogenic hard substrata was investigated in a highly disturbed coastal area, along the eastern Saronikos Gulf (Aegean Sea, Eastern Mediterranean). Although the species occurred on both natural and anthropogenic substrata at similar frequencies, its abundance was substantially higher on the latter. The species was present all along the shallow (0.5–5 m) infralittoral zone of the studied coastline, and its percent cover even exceeded 50 % at a site of anthropogenic hard substratum. The occupancy of the species declined with distance from a highly disturbed industrialized/urbanized area (Athens metropolitan coastal front and the port of Piraeus). Space availability as a result of habitat modification appears to have been an important factor enhancing the coral’s abundance in this area. The ongoing degradation of the coastal zone, as a combined effect of coastal pollution, proliferation of artificial substrata and overgrazing seems to be paving the way to this new invasion in the Aegean Sea.  相似文献   

20.
Matched sets of gillnets of different mesh-sizes were used to evaluate the degree to which contiguous and connected flooded forest and floating meadow habitats are characterized by distinct fish faunas during the flooding season in the Peruvian Amazon. For fishes between 38–740 mm standard length ( L S) (the size range captured by the gear), an overriding pattern of faunal similarity emerged between these two habitats. The mean species richness, diversity, abundance, fish mass, mean and maximum L S, and maximum mass did not differ significantly between flooded forest and floating meadows. Species abundances followed a log-normal distribution in which three species accounted for 60–70% of the total abundance in each habitat. Despite these similarities, multivariate analyses demonstrated subtle differences in species composition between flooded forest and adjacent floating macrophytes. In addition, the absolute number of species was higher in flooded forest, reflecting a higher percentage of rare species. The day–night species turnover was found to be greater in flooded forests than floating meadows. Further, nocturnal samples had higher abundances and greater species richness than diurnal samples in both habitats. Differences in habitat structural complexity between flooded forest and floating meadows may result in a higher abundance and species richness of day-active species in floating meadows.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号