首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Chi EY  Ege C  Winans A  Majewski J  Wu G  Kjaer K  Lee KY 《Proteins》2008,72(1):1-24
The lipid membrane has been shown to mediate the fibrillogenesis and toxicity of Alzheimer's disease (AD) amyloid-beta (Abeta) peptide. Electrostatic interactions between Abeta40 and the phospholipid headgroup have been found to control the association and insertion of monomeric Abeta into lipid monolayers, where Abeta exhibited enhanced interactions with charged lipids compared with zwitterionic lipids. To elucidate the molecular-scale structural details of Abeta-membrane association, we have used complementary X-ray and neutron scattering techniques (grazing-incidence X-ray diffraction, X-ray reflectivity, and neutron reflectivity) in this study to investigate in situ the association of Abeta with lipid monolayers composed of either the anionic lipid 1,2-dipalmitoyl-sn-glycero-3-[phospho-rac-(1-glycerol)] (DPPG), the zwitterionic lipid 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), or the cationic lipid 1,2-dipalmitoyl 3-trimethylammonium propane (DPTAP) at the air-buffer interface. We found that the anionic lipid DPPG uniquely induced crystalline ordering of Abeta at the membrane surface that closely mimicked the beta-sheet structure in fibrils, revealing an intriguing templated ordering effect of DPPG on Abeta. Furthermore, incubating Abeta with lipid vesicles containing the anionic lipid 1-palmitoyl-2-oleoyl-sn-glycero-3-[phospho-rac-(1-glycerol)] (POPG) induced the formation of amyloid fibrils, confirming that the templated ordering of Abeta at the membrane surface seeded fibril formation. This study provides a detailed molecular-scale characterization of the early structural fluctuation and assembly events that may trigger the misfolding and aggregation of Abeta in vivo. Our results implicate that the adsorption of Abeta to anionic lipids, which could become exposed to the outer membrane leaflet by cell injury, may serve as an in vivo mechanism of templated-aggregation and drive the pathogenesis of AD.  相似文献   

2.
Comparative studies of the effect of a short synthetic cationic peptide, pEM-2 (KKWRWWLKALAKK), derived from the C-terminus of myotoxin II from the venom of the snake Bothrops asper on phospholipid mono- and bilayers were performed by means of Langmuir Blodgett (LB) monolayer technique, atomic force microscopy and calcein leakage assay. Phospholipid mono- and bilayers composed of single zwitterionic or anionic phospholipids as well as lipid mixtures mimicking bacterial cell membrane were used. LB measurements indicate that the peptide binds to both anionic and zwitterionic phospholipid monolayers at low surface pressure but only to anionic at high surface pressure. Preferential interaction of the peptide with anionic phospholipid monolayer is also supported by a more pronounced change of the monolayer pressure/area isotherms induced by the peptide. AFM imaging reveals the presence of nanoscale aggregates in lipid/peptide mixture monolayers. At the same time, calcein leakage experiment demonstrated that pEM-2 induces stronger disruption of zwitterionic than anionic bilayers. Results of the study indicate that electrostatic interactions play a significant role in the initial recognition and binding of pEM-2 to the cell membrane. However, membrane rupturing activity of the peptide depends on interactions other than simple ionic attraction.  相似文献   

3.
Anoplin, an antimicrobial, helical decapeptide from wasp venom, looses its biological activities by mere deamidation of its C-terminus. Secondary structure determination, by circular dichroism spectroscopy in amphipathic environments, and lytic activity in zwitterionic and anionic vesicles showed quite similar results for the amidated and the carboxylated forms of the peptide. The deamidation of the C-terminus introduced a negative charge at an all-positive charged peptide, causing a loss of amphipathicity, as indicated by molecular dynamics simulations in TFE/water mixtures and this subtle modification in a peptide's primary structure disturbed the interaction with bilayers and biological membranes. Although being poorly lytic, the amidated form, but not the carboxylated, presented ion channel-like activity on anionic bilayers with a well-defined conductance step; at approximately the same concentration it showed antimicrobial activity. The pores remain open at trans-negative potentials, preferentially conducting cations, and this situation is equivalent to the interaction of the peptide with bacterial membranes that also maintain a high negative potential inside.  相似文献   

4.
Dermaseptin S9 (Drs S9) is an atypical cationic antimicrobial peptide with a long hydrophobic core and with a propensity to form amyloid-like fibrils. Here we investigated its membrane interaction using a variety of biophysical techniques. Rather surprisingly, we found that Drs S9 induces efficient permeabilisation in zwitterionic phosphatidylcholine (PC) vesicles, but not in anionic phosphatidylglycerol (PG) vesicles. We also found that the peptide inserts more efficiently in PC than in PG monolayers. Therefore, electrostatic interactions between the cationic Drs S9 and anionic membranes cannot explain the selectivity of the peptide towards bacterial membranes. CD spectroscopy, electron microscopy and ThT fluorescence experiments showed that the peptide adopts slightly more β-sheet and has a higher tendency to form amyloid-like fibrils in the presence of PC membranes as compared to PG membranes. Thus, induction of leakage may be related to peptide aggregation. The use of a pre-incorporation protocol to reduce peptide/peptide interactions characteristic of aggregates in solution resulted in more α-helix formation and a more pronounced effect on the cooperativity of the gel-fluid lipid phase transition in all lipid systems tested. Calorimetric data together with 2H- and 31P-NMR experiments indicated that the peptide has a significant impact on the dynamic organization of lipid bilayers, albeit slightly less for zwitterionic than for anionic membranes. Taken together, our data suggest that in particular in membranes of zwitterionic lipids the peptide binds in an aggregated state resulting in membrane leakage. We propose that also the antimicrobial activity of Drs S9 may be a result of binding of the peptide in an aggregated state, but that specific binding and aggregation to bacterial membranes is regulated not by anionic lipids but by as yet unknown factors.  相似文献   

5.
L1A (IDGLKAIWKKVADLLKNT-NH2) is a peptide that displays a selective antibacterial activity to Gram-negative bacteria without being hemolytic. Its lytic activity in anionic lipid vesicles was strongly enhanced when its N-terminus was acetylated (ac-L1A). This modification seems to favor the perturbation of the lipid core of the bilayer by the peptide, resulting in higher membrane lysis. In the present study, we used lipid monolayers and bilayers as membrane model systems to explore the impact of acetylation on the L1A lytic activity and its correlation with lipid-packing perturbation. The lytic activity investigated in giant unilamellar vesicles (GUVs) revealed that the acetylated peptide permeated the membrane at higher rates compared with L1A, and modified the membrane's mechanical properties, promoting shape changes. The peptide secondary structure and the changes in the environment of the tryptophan upon adsorption to large unilamellar vesicles (LUVs) were monitored by circular dichroism (CD) and red-edge excitation shift experiments (REES), respectively. These experiments showed that the N-terminus acetylation has an important effect on both, peptide secondary structure and peptide insertion into the bilayer. This was also confirmed by experiments of insertion into lipid monolayers. Compression isotherms for peptide/lipid mixed films revealed that ac-L1A dragged lipid molecules to the more disordered phase, generating a more favorable environment and preventing the lipid molecules from forming stiff films. Enthalpy changes in the main phase transition of the lipid membrane upon peptide insertion suggested that the acetylated peptide induced higher impact than the non-acetylated one on the thermotropic behavior of anionic vesicles.  相似文献   

6.
Using Langmuir’s monolayer technique, the surface behavior and the interaction of the synthetic neuropeptide methionine-enkephalin (Met-enk) and its amidated derivate (Met-enk-NH2) with monolayers of the zwitterionic dimyristoylphosphatidylcholine (DMPC) and the negatively charged dimyristoylphosphatidylglycerol (DMPG) were studied. The surface tension (γ, mN/m) of DMPG and DMPC monolayers as a function of time (after injection of the peptide under the interface) was detected. The decrease in γ values showed that there was a strong penetration effect of both types of Met-enk molecules into the monolayers, being significantly stronger for the amidated derivate, Met-enk-NH2. We suggest that the interaction between the neuropeptides and DMPC was predominantly determined by peptides amphiphilicity, while the electrostatic forces play significant role for the insertion of the cationic Met-enk-NH2 in DMPG monolayers, especially at high packing densities. Our results demonstrate the potential of lipid monolayers formed in Langmuir’s trough to be successfully used as an elegant and simple membrane models to study lipid–peptide interactions at the air/water interface.  相似文献   

7.
Cecropins are a group of anti-bacterial, cationic peptides that have an amphipathic N-terminal segment, and a largely hydrophobic C-terminal segment and normally form a helix-hinge-helix structure. In this study, the ability of cecropin B (CB) and two analogs to lyse phospholipid bilayers, which have two levels of anionic content, has been examined by dye-leakage measurements over the pH range 2. 0-12.0. The two analogs differ from the natural peptide by having either two amphipathic segments (CB1) or two hydrophobic segments (CB3). All these peptides (except CB3 on low anionic content bilayers where it is not active) have maximal lytic activity on both types of bilayers at high pH. However, the pattern of secondary structure formation on these bilayers by the peptides, as measured by circular dichroism (CD), and the pattern of their ability to bind lipid monolayers, as measured using a biosensor, do not directly correlate with the pattern of their lytic ability. CB and CB1 with low anionic content bilayers have secondary structures as measured by CD with a similar pattern to membrane lysis, but binding is maximal near neutral, not high, pH. CB3 has some secondary structures on low anionic content bilayers at low pH and this becomes maximal over the basic range, but CB3 neither binds to nor lyses with these lipid layers. On high anionic content lipid layers, all peptides show high levels of secondary structures over most of the pH range and maximal binding at neutral pH (except for CB3, which does not bind). All three peptides lyse with high anionic content bilayers, but show no activity at neutral pH and reach maximal activity at very high pH. This work shows that pH is a major factor in the capability of antibacterial peptides to lyse with liposomes and that secondary structure and binding ability may not be the main determinants.  相似文献   

8.
Core peptide (CP; GLRILLLKV) is a 9-amino acid peptide derived from the transmembrane sequence of the T-cell antigen receptor (TCR) alpha-subunit. CP inhibits T-cell activation both in vitro and in vivo by disruption of the TCR at the membrane level. To elucidate CP interactions with lipids, surface plasmon resonance (SPR) and circular dichroism (CD) were used to examine CP binding and secondary structure in the presence of either the anionic dimyristoyl-L-alpha-phosphatidyl-DL-glycerol (DMPG), or the zwitterionic dimyristoyl-L-alpha-phoshatidyl choline (DMPC).Using lipid monolayers and bilayers, SPR experiments demonstrated that irreversible peptide-lipid binding required the hydrophobic interior provided by a membrane bilayer. The importance of electrostatic interactions between CP and phospholipids was highlighted on lipid monolayers as CP bound reversibly to anionic DMPG monolayers, with no detectable binding observed on neutral DMPC monolayers.CD revealed a dose-dependent conformational change of CP from a dominantly random coil structure to that of beta-structure as the concentration of lipid increased relative to CP. This occurred only in the presence of the anionic DMPG at a lipid : peptide molar ratio of 1.6:1 as no conformational change was observed when the zwitterionic DMPC was tested up to a lipid : peptide ratio of 8.4 : 1.  相似文献   

9.
Polysialic acid (PSA) is a natural anionic polymer typically occurring on the outer surface of cell membranes. PSA is involved in cell signaling and intermolecular interactions with proteins and peptides. The antimicrobial potential of peptides is usually evaluated in model membranes consisting of lipid bilayers but devoid of either PSA or its analogs. The goal of this work was to investigate the possible effect of PSA on the structure of melittin (Mlt) and latarcins Ltc1K, Ltc2a, and the activity of these peptides with respect to model membranes. These peptides are linear cationic ones derived from the venom of bee (Mlt) and spider (both latarcins). The length of each of the peptides is 26 amino acid residues, and they all have antimicrobial activity. However, they differ with respect to conformational mobility, hydrophobic characteristics, and overall charge. In this work, using circular dichroism spectroscopy, we show that the peptides adopt an α-helical conformation upon interaction with either PSA or phospholipid liposomes formed of either zwitterionic or anionic phospholipids or their mixtures. The extent of helicity depends on the amino acid sequence and properties of the medium. Based on small angle X-ray scattering data and the analysis of the fluorescence spectrum of the Trp residue in Mlt, we conclude that the peptide forms an oligomeric complex consisting of α-helical Mlt and several PSA molecules. Both latarcins, unlike Mlt, the most hydrophobic of the peptides, interact weakly with zwitterionic liposomes. However, they bind anionic liposomes or those composed of anionic/zwitterionic lipid mixtures. Latarcin Ltc1K forms associates on liposomes composed of zwitterionic/anionic lipid mixture. The structure of the peptide associates is either disordered or of β-sheet conformation. In all other cases the studied peptides adopt predominately α-helical conformation. In addition, we demonstrate that PSA inhibits membranolytic activity of Mlt and latarcin Ltc1K. These data suggest that the peptides, due to their high conformational lability, can vary structural and amphiphilic properties in the presence of PSA. As a result, various scenarios of the interaction of the peptides with membranes, whose surface is abundant with anionic polysaccharides, can take place. This can account for difficulties in understanding the structure-functional relationships in interactions of linear cationic peptides with biological membranes.  相似文献   

10.
One way to gain information about the fusogenic potential of virus-derived synthetic peptides is to examine their interfacial properties and subsequently to study them in monolayers and bilayers. Here, we characterize the physicochemical surface properties of the peptide E1(64-81), whose sequence is AQLVGELGSLYGPLSVSA. This peptide is derived from the E1 structural protein of GBV-C/HGV which was previously shown to inhibit leakage of vesicular contents caused by the HIV-1 fusion peptide (HIV-1 FP). Mixed isotherms of E1(64-81) and HIV-1 FP were obtained and their Brewster angle microscopy (BAM) and atomic force microscopy (AFM) images showed that the peptide mixture forms a different structure that is not present in the pure peptide images. Studies with lipid monolayers (1,2-dimyristoyl-sn-glycero-3-[phospho-rac-(1-glycerol)] (DMPG) and 1,2-dipalmitoyl-sn-glycero-3-phospho-rac-(1-glycerol) (DPPG)) show that both peptides interact with all the lipids assayed but the effect that HIV-1 FP has on the monolayers is reduced in the presence of E1(64-81). Moreover, differential scanning calorimetry (DSC) experiments show the capacity of HIV-1 FP to modify the properties of the bilayer structure and the capacity of E1(64-81) to inhibit these modifications. Our results indicate that E1(64-81) interacts with HIV-1 FP to form a new structure, and that this may be the cause of the previously observed inhibition of the activity of HIV-1 FP by E1(64-81).  相似文献   

11.
Mastoparan X (MPX: INWKGIAAMAKKLL-NH2) belongs to a family of ionophoric peptides found in wasp venom. Upon binding to the membrane, MPX increases the cell's permeability to cations leading to a disruption in the electrolyte balance and cell lysis. This process is thought to occur either through a membrane-thinning mechanism, where the peptide resides on the membrane surface thereby disrupting lipid packing, or through formation of an oligomeric pore. To address this issue, we have used both high-resolution and solid-state 2H NMR techniques to study the structure and orientation of MPX when associated with bicelles. NOESY and chemical shift analysis showed that in bicelles, MPX formed a well-structured amphipathic alpha-helix. In zwitterionic bicelles, the helical axis was found to rest generally perpendicular to the membrane normal, which could be consistent with the "carpet" mechanism for lytic activity. In anionic bicelles, on the other hand, the helical axis was generally parallel to the membrane normal, which is more consistent with the pore model for lytic activity. In addition, MPX caused significant disruption in lipid packing of the negatively charged phospholipids. Taken together, these results show that MPX associates differently with zwitterionic membranes, where it rests parallel to the surface, compared with negatively charged membranes, where it penetrates longitudinally.  相似文献   

12.
Theoretical analysis indicates that peptide VP1 forms a membrane interactive amphiphilic alpha-helix with antibacterial properties. Fourier transform infra-red based analyses showed VP1 to be alpha-helical (45%) in the presence of vesicle mimics of membranes from Staphylococcus aureus and to induce increases in the fluidity of these vesicles, as indicated by a rise in wavenumber of circa 0.5 to 1.0 cm(-1). The peptide induced surface pressure increases of 5 mN m(-1) in monolayer mimics of S. aureus membranes confirm the formation of a membrane interactive alpha-helix. These interactions appeared to involve significant hydrophobic and electrostatic contributions as VP1 induced comparable surface pressure changes in anionic (5.5 mN m(-1)) and zwitterionic (4 mN m(-1)) lipid monolayers. It is suggested that whilst efficacy requires further sequence specific information, the peptides generic structure provides the basis for its broad antimicrobial activity.  相似文献   

13.
The skins of closely related frog species produce Gly-Leu-rich peptide orthologs that have very similar sequences, hydrophobicities, and amphipathicities but differ markedly in their net charge and membrane-damaging properties. Cationic Gly-Leu-rich peptides are hemolytic and very potent against microorganisms. Peptides with no net charge have only hemolytic activity. We have used ancestral protein reconstruction and peptide analogue design to examine the roles of electrostatic and hydrophobic interactions in the biological activity and mode of action of functionally divergent Gly-Leu-rich peptides. The structure and interaction of the peptides with anionic and zwitterionic model membranes were investigated by circular dichroism with 2-dimyristoyl-sn-glycero-3-phosphatidylcholine or 1,2-dimyristoyl-sn-glycero-3-phosphatidylglycerol vesicles and surface plasmon resonance with immobilized bilayers. The results, combined with antimicrobial assays, the kinetics of bacterial killing, and membrane permeabilization assays, reveal that Gly, Val, Thr, and Ile can all be accommodated in an amphipathic alpha helix when the helix is in a membrane environment. Binding to anionic and zwitterionic membranes fitted to a 2-stage interaction model (adsorption to the membrane followed by membrane insertion). The first step is governed by hydrophobic interactions between the nonpolar surface of the peptide helix and the membranes. The strong binding of Gly-Leu-rich cationic peptides to anionic membranes is due to the second binding step and involves short-range Coulombic interactions that prolong the residence time of the membrane-inserted peptide. The data demonstrate that evolution has positively selected charge-altering nucleotide substitutions to generate an orthologous cationic variant of neutral hemolytic peptides that bind to and permeate bacterial cell membranes.  相似文献   

14.
Tritrpticin and indolicidin are short 13-residue tryptophan-rich antimicrobial peptides that hold potential as future alternatives for antibiotics. Isothermal titration calorimetry (ITC) has been applied as the main tool in this study to investigate the thermodynamics of the interaction of these two cathelicidin peptides as well as five tritrpticin analogs with large unilamellar vesicles (LUVs), representing model and natural anionic membranes. The anionic LUVs were composed of (a) 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine/1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol (POPE/POPG) (7:3) and (b) natural E. coli polar lipid extract. 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) was used to make model zwitterionic membranes. Binding isotherms were obtained to characterize the antimicrobial peptide binding to the LUVs, which then allowed for calculation of the thermodynamic parameters of the interaction. All peptides exhibited substantially stronger binding to anionic POPE/POPG and E. coli membrane systems than to the zwitterionic POPC system due to strong electrostatic attractions between the highly positively charged peptides and the negatively charged membrane surface, and results with tritrpticin derivatives further revealed the effects of various amino acid substitutions on membrane binding. No significant improvement was observed upon increasing the Tritrp peptide charge from +4 to +5. Replacement of Arg residues with Lys did not substantially change peptide binding to anionic vesicles but moderately decreased the binding to zwitterionic LUVs. Pro to Ala substitutions in tritrpticin, allowing the peptide to adopt an alpha-helical structure, resulted in a significant increase of the binding to both anionic and zwitterionic vesicles and therefore reduced the selectivity for bacterial and mammalian membranes. In contrast, substitution of Trp with other aromatic amino acids significantly decreased the peptide's ability to bind to anionic LUVs and essentially eliminated binding to zwitterionic LUVs. The ITC results were consistent with the outcome of fluorescence spectroscopy membrane binding and perturbation studies. Overall, our work showed that a natural E. coli polar lipid extract as a bacterial membrane model was advantageous compared to the simpler and more widely used POPE/POPG lipid system.  相似文献   

15.
Tritrpticin and indolicidin are short 13-residue tryptophan-rich antimicrobial peptides that hold potential as future alternatives for antibiotics. Isothermal titration calorimetry (ITC) has been applied as the main tool in this study to investigate the thermodynamics of the interaction of these two cathelicidin peptides as well as five tritrpticin analogs with large unilamellar vesicles (LUVs), representing model and natural anionic membranes. The anionic LUVs were composed of (a) 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine/1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol (POPE/POPG) (7:3) and (b) natural E. coli polar lipid extract. 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) was used to make model zwitterionic membranes. Binding isotherms were obtained to characterize the antimicrobial peptide binding to the LUVs, which then allowed for calculation of the thermodynamic parameters of the interaction. All peptides exhibited substantially stronger binding to anionic POPE/POPG and E. coli membrane systems than to the zwitterionic POPC system due to strong electrostatic attractions between the highly positively charged peptides and the negatively charged membrane surface, and results with tritrpticin derivatives further revealed the effects of various amino acid substitutions on membrane binding. No significant improvement was observed upon increasing the Tritrp peptide charge from + 4 to + 5. Replacement of Arg residues with Lys did not substantially change peptide binding to anionic vesicles but moderately decreased the binding to zwitterionic LUVs. Pro to Ala substitutions in tritrpticin, allowing the peptide to adopt an α-helical structure, resulted in a significant increase of the binding to both anionic and zwitterionic vesicles and therefore reduced the selectivity for bacterial and mammalian membranes. In contrast, substitution of Trp with other aromatic amino acids significantly decreased the peptide's ability to bind to anionic LUVs and essentially eliminated binding to zwitterionic LUVs. The ITC results were consistent with the outcome of fluorescence spectroscopy membrane binding and perturbation studies. Overall, our work showed that a natural E. coli polar lipid extract as a bacterial membrane model was advantageous compared to the simpler and more widely used POPE/POPG lipid system.  相似文献   

16.
We present relative binding free energy calculations for six antimicrobial peptide-micelle systems, three peptides interacting with two types of micelles. The peptides are the scorpion derived antimicrobial peptide (AMP), IsCT and two of its analogues. The micelles are dodecylphosphatidylcholine (DPC) and sodium dodecylsulphate (SDS) micelles. The interfacial electrostatic properties of DPC and SDS micelles are assumed to be similar to those of zwitterionic mammalian and anionic bacterial membrane interfaces, respectively. We test the hypothesis that the binding strength between peptides and the anionic micelle SDS can provide information on peptide antimicrobial activity, since it is widely accepted that AMPs function by binding to and disrupting the predominantly anionic lipid bilayer of the bacterial cytoplasmic membrane. We also test the hypothesis that the binding strength between peptides and the zwitterionic micelle DPC can provide information on peptide haemolytic activities, since it is accepted that they also bind to and disrupt the zwitterionic membrane of mammalian cells. Equilibrium structures of the peptides, micelles and peptide-micelle complexes are obtained from more than 300 ns of molecular dynamics simulations. A thermodynamic cycle is introduced to compute the binding free energy from electrostatic, non-electrostatic and entropic contributions. We find relative binding free energy strengths between peptides and SDS to correlate with the experimentally measured rankings for peptide antimicrobial activities, and relative free energy binding strengths between peptides and DPC to correlate with the observed rankings for peptide haemolytic toxicities. These findings point to the importance of peptide-membrane binding strength for antimicrobial activity and haemolytic activity.  相似文献   

17.
The interaction of antimicrobial peptide anoplin with 1,2-dipalmitoyl-sn-glycero-3-[phospho-rac-(1-glycerol)] lipid monolayers was imaged with atomic force microscopy, scanning transmission X-ray microscopy, and X-ray photoemission electron microscopy. X-ray absorption spectromicroscopy of the surface revealed the domains of the phase-segregated surface to be composed of 98(±5)% lipid while the matrix consisted of a ~50:50 lipid-peptide mixture. We show X-ray spectromicroscopy to be a valuable quantitative tool for label-free imaging of lipid monolayers with antimicrobial peptides at a lateral spatial resolution below 80 nm.  相似文献   

18.
Latarcin 2a (ltc2a, GLFGKLIKKFGRKAISYAVKKARGKH-COOH) is a short linear antimicrobial and cytolytic peptide extracted from the venom of the Central Asian spider, Lachesana tarabaevi, with lytic activity against Gram-positive and Gram-negative bacteria, erythrocytes, and yeast at micromolar concentrations. Ltc2a adopts a helix-hinge-helix structure in membrane mimicking environment, whereas its derivative latarcin 2aG11A (ltc2aG11A, GLFGKLIKKFARKAISYAVKKARGKH-COOH), likely adopts a more rigid structure, demonstrates stronger nonspecific interaction with the zwitterionic membrane, and is potentially more toxic against eukaryotic cells. In this work, interactions of these two ltc2a derivatives with supported "raft" lipid bilayer (1,2-dioleoyl-sn-glycero-3-phosphocholin/egg sphingomyelin/cholesterol 40/40/20mol%) were studied by in situ atomic force microscopy in order to investigate the potential anticancer activity of the peptides since some breast and prostate cancer cell lines contain higher levels of cholesterol-rich lipid rafts than non-cancer cells. Both peptides induced reorganization of the raft model membrane by reducing line tension of the liquid ordered phase. Ltc2aG11A induced membrane thinning likely due to membrane interdigitation. Formation of large pores by the peptides in the bilayer was observed. Cholesterol was found to attenuate membrane disruption by the peptides. Finally, leakage assay showed that both peptides have similar membrane permeability toward various model membrane vesicles.  相似文献   

19.
Latarcins are linear, α-helical antimicrobial peptides purified from the venom of the Central Asian spider Lachesana tarabaevi, with lytic activity against Gram-positive and Gram-negative bacteria, erythrocytes, and yeast at micromolar concentrations. In this work, we investigated the role of the hinge in latarcin 2a (ltc2a, GLFGKLIKKFGRKAISYAVKKARGKH-COOH), which adopts a helix–hinge–helix conformation in membrane-mimicking environments, on peptide–membrane interactions and its potential effect on the selective toxicity of the peptide. A modified latarcin 2a, ltc2aG11A, obtained by replacing the glycine at position 11 with alanine (ltc2aG11A, GLFGKLIKKFARKAISYAVKKARGKH-COOH), adopts a more rigid structure due to the reduced conformational flexibility. Langmuir monolayer measurements combined with atomic force microscopy and X-ray photoemission electron microscopy (X-PEEM) indicate that both peptides bind and insert preferentially into anionic compared with zwitterionic phospholipid monolayers. Modified ltc2aG11A was found to be more disruptive of supported phospholipid bilayer modeling mammalian cell membrane. However, no considerable difference in lytic activity of the two peptides toward bacterial membrane was found. Overall the data indicate that decrease in the flexibility of ltc2a induced by the modification in the hinge region is likely to increase the peptide’s nonspecific interactions with zwitterionic cell membranes and potentially increase its toxicity against eukaryotic cells.  相似文献   

20.
The effects of composition and molecular packing on the overall ionic property of mixed monolayer involving cationic, anionic and zwitterionic lipids were studied by measuring surface potential change when the concentration of sodium or calcium ions in the aqueous substrate was varied. Those lipids used were N,N-dimethyl-N-n-hexadecyl-n-octadecyl ammonium chloride (DDAC) as cationic lipid, stearic acid (StH) or sodium docosylsulfate (SDocS) as anionic lipid, and 1,2-dipalmitoyl-sn-glycero-3-phosphorylethanolamine (PE) and 1,2-distearoyl-sn-glycero-3-phosphorylcholine (PC) as ampholytic lipids. For the equimolar mixture of StH and DDAC, the reversal of apparent charge is observed when molecular packing exceeds 3.25 X 10(-10) M/cm2. The effect is rendered to the discreteness of cationic and anionic charges in the monolayer. It was also found that the addition of 30% of PC drastically changes the ionic property of PE closer to that of PC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号