首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A micro method for determination of indomethacin in plasma was developed. Following deproteinization of plasma with acetonitrile containing internal standard (mefenamic acid), the separation of indomethacin and internal standard was achieved by high-performance liquid chromatography using a 7 μm LiChrosorb-RP18 column (250×4 mm I.D.) at 50°C. The mobile phase was 6 mM phosphoric acid–acetonitrile (50:50). The flow-rate was kept at 2.0 ml/min and the column effluent was monitored at 205 nm. The coefficients of variation of the method estimated at 0.2 and 1.0 μg/ml were 4.2 and 2.3%, and the detection limit of the drug was about 0.05 μg/ml (S/N=5). The method requires minimum pretreatment of the plasma with a small sample volume (25 μl), and is very suitable for therapeutic drug monitoring of indomethacin in premature infants with symptomatic patent ductus arteriosus.  相似文献   

2.
An improved, rapid and specific high-performance liquid chromatographic assay was developed for the determination of famotidine in human plasma and urine. Plasma samples were alkalinized and the analyte and internal standard (cimetidine) extracted with water-saturated ethyl acetate. The extracts were reconstituted in mobile phase, and injected onto a C18 reversed-phase column; UV detection was set at 267 nm. Urine samples were diluted with nine volumes of a mobile phase-internal standard mixture prior to injection. The lower limits of quantification in plasma and urine were 75 ng/ml and 1.0 μg/ml, respectively; intra- and inter-day coefficients of variation were ≤10.5%. This method is currently being used to support renal function studies assessing the use of intravenously administered famotidine to characterize cationic tubular secretion in man.  相似文献   

3.
A simple and sensitive high-performance liquid chromatographic method involving UV detection was developed for determination of caffeic acid in rabbit plasma. A Lichrosphere CN column (250 mm × 4 mm I.D., 5 μm) was used as the stationary phase and the mobile phase consisted of 2% acetic acid solution at a flow-rate of 1.0 ml/min. The UV absorbance was monitored at 320 nm. The plasma sample was acidified by the addition of 0.01 parts of concentrated phosphoric acid (85%) to maintain caffeic acid stability. After a simple clean-up procedure, the limit of quantitation achieved was 0.1 μg/ml, and the standard curve was found to be linear over the concentration ranges of 0.1–2.0 μg/ml and 0.1–40 μg/ml. The coefficient of variation for within- and between-run precision and accuracy was less than 10%, and the recovery was 82.3%.  相似文献   

4.
Nelfinavir mesylate, a potent and orally bioavailable inhibitor of HIV-1 protease (Ki=2 nM), has undergone Phase III clinical evaluation in a large population of HIV-positive patients. A high-performance liquid chromatography analytical method was developed to determine the pharmacokinetic parameters of the free base, nelfinavir, in these human subjects. The method involved the extraction of nelfinavir and an internal standard, 6,7-dimethyl-2,3-di-(2-pyridyl)quinoxaline, from 250 μl of human plasma with a mixture of ethyl acetate–acetonitrile (90:10, v/v). The analysis was via ultraviolet detection at 220 nm using a reversed-phase C18 analytical column and a mobile phase consisting of 25 mM monobasic sodium phosphate buffer (adjusted to pH 3.4 with phosphoric acid)–acetonitrile (58:42, v/v) that resolved the drug and internal standard peaks from non-specific substances in human plasma. The method was validated under Good Laboratory Practice (GLP) conditions for specificity, inter- and intra-assay precision and accuracy, absolute recovery and stability. The mean recovery ranged from 92.4 to 83.0% for nelfinavir and was 95.7% for the internal standard. The method was linear over a concentration range of 0.0300 μg/ml to 10 μg/ml, with a minimum quantifiable level of 0.0500 μg/ml for nelfinavir.  相似文献   

5.
A simple and practical high-performance liquid chromatographic analysis has been developed for measuring teniposide (VM26) in human plasma. The present analytical method has improved extraction efficiency from human plasma, therefore allowing determination of VM26 in a clinical setting using ultraviolet detection alone. Furthermore, sample preparation was simplified and shortened through use of a one-step extraction procedure. VM26 and internal standard (ibuprofen) were extracted from human plasma (0.5 ml) with ethyl acetate. A phenyl μBondapak column eluted with a mobile phase, consisting of acetonitrile–distilled water–acetic acid (30:68:2, v/v/v) was used for separation, and quantitation was achieved with a UV monitor set at 240 nm. Average extraction efficiency was 96.8±6.6% for VM26 between 1 and 25 μg/ml, and 91.4±4.3% for internal standard, with both intra- and inter-day coefficients of variation being less than 10%. The detection limit with a 100-μl injection was estimated at 0.2 μg/ml with a signal-to-noise ratio of 3 for VM26 in human plasma. The stability data of VM26 in plasma, standard and stock solutions were also obtained. The present method was found to be an alternative to the previously reported method with an electrochemical detection, and can be easily applied to routine clinical pharmacokinetic studies of VM26.  相似文献   

6.
A high-performance liquid chromatographic method is described for the simultaneous determination of methylprednisolone (MP) and methylprednisolone hemisuccinate (MPHS), or hydrocortisone (HC) and hydrocortisone hemisuccinate (HCHS) in human serum. Reversed-phase liquid chromatography was performed on a microparticulate C18 column (Spherisorb, 5 μm) using a mobile phase of 2% glacial acetic acid, 30–35% acetonitrile, 70–65% water with ultraviolet detection (254 nm). The method uses 17α-hydroxyprogesterone as the internal standard for the determination of methylprednisolone and its hemisuccinate ester, or 11-deoxy-17-hydroxycorticosterone as the internal standard for the determination of hydrocortisone and its hemisuccinate ester. The sensitivity is 0.03 μg/ml for HC, 0.07 μg/ml for MP, 0.04 μg/ml for MPHS, and 0.10 μg/ml for HCHS, with a detection limit of 0.02 μg/ml for all four steroids. Calibration curves are linear up to 3 μg/ml for MP or MPHS (as equivalent MP) and up to 4 μg/ml for HC and 7 μg/ml (as equivalent HC) for HCHS. The pooled relative standard deviation for replicate samples for each steroid is < 7%. Plasma concentration—time curves are reported for MP and MPHS or HC and HCHS of two human subjects following intramuscular administration of 125 mg of methylprednisolone sodium succinate for injection, U.S.P., or 250 mg of hydrocortisone sodium succinate for injection, U.S.P.  相似文献   

7.
A new method is described for the determination of cimetidine in human plasma. The drug and internal standard (ranitidine) were separated on a Nucleosil C18 5 μm (25 × 4.6 mm I.D.) column using a mobile phase of acetonitrile-phosphate buffer, pH 6.2 (25:75, v/v) containing 2.5 g/l heptane sulphonic acid. The mobile phase was delivered at a flow-rate of 0.9 ml/min, detection was by ultraviolet absorption at 228 nm and concentrations were calculated on the basis of peak areas. The drugs were extracted from alkaline plasma into ethyl acetate using a salting out procedure which involved the addition of 100 ml of a saturated solution of K2CO3 to each 250-μl plasma aliquot. The method was validated over the concentration ranges 50–3000 ng/ml and 100–7000 ng/ml for two separate studies. Mean coefficients of variation were less than 6% for both intra- and inter-assay in both studies and recoveries varied between 71 and 81%. The method was successfully applied to the determination of cimetidine in plasma for a pharmacokinetic study.  相似文献   

8.
A direct injection high-performance liquid chromatography method is described for the determination of mitomycin C (MMC) in human plasma. The stationary phase consisted of hydrophilic and hydrophobic functional groups covalently bound to silicone-coated silica beads (CAPCELL PAK MF Ph-1, 150×4.6 mm I.D., 5 μm). A mobile phase using 100% water gave a better separation of MMC from endogenous interferences as compared to a mobile phase with 12.5% acetonitrile and 2.5 mM phosphate buffer (pH 6.9). Using water as the eluent (1 ml/min) and UV detection at 365 nm, MMC was found to elute at 5.0 min with a peak width of 0.3 min, whereas endogenous interferences eluted before 3 min. Total assay time per sample was 6 min. Internal standard was not required because the recovery of MMC was nearly complete, about 90% from 20 to 5000 ng/ml. The standard curve was linear from 20 to 5000 ng/ml in plasma, and the intra- and inter-day variation was between 3 to 6%. The lower detection limit was 5 ng/ml with a 25 μl sample, which represent a two- to four-fold improvement over the 10 ng/ml detection limit by previous methods using liquid-liquid extraction and comparable sample size. The simplicity of this method, i.e., no sample extraction, no internal standard, 100% aqueous mobile phase, isocratic elution and short analysis time (6 min/sample), makes it suitable for large scale routine sample analysis, whereas its small sample volume requirement and high sensitivity are useful for pharmacokinetic studies in small animals where limited sample is available.  相似文献   

9.
A high-performance liquid chromatographic method for the determination of naproxen in plasma is described. The technique is based on the single extraction of the drug from acidified plasma with chloroform using 2-naphthalene acetic acid as internal standard. The chromatographic system consisted of a column packed with Spherisorb ODS (5 μm); the mobile phase was acetonitrile—phosphoric acid (pH 3) (45:55, v/v).The method can accurately measure plasma naproxen concentrations down to 1 μg/ml using 100 μl of sample, with no interference from endogenous compounds. The coefficients of variation of the method at 120 μg/ml and 1 μg/ml are 2.8 and 21.6%, respectively, and the calibration curve is linear. The method described is very suitable for routine clinical and pharmacokinetic studies.  相似文献   

10.
A simple, specific and sensitive high-performance liquid chromatographic method has been developed for the simultaneous determination of rufloxacin, fenbufen and felbinac in human plasma. Plasma, spiked with internal standard, was vortex-mixed for 1 min with a mixture of dichloromethane-diethyl ether (80:20, v/v). The evaporated extract was dissolved in 0.02 M NaOH. Drugs were resolved at room temperature on a 5 μm Zorbax SAX column (250×4.6 min I.D.) equipped with a 20×4.6 mm anion-exchange Vydac AXGU ( 10 μm particle size) precolumn. The mobile phase consisted of acetonitrile and phosphate buffer (pH 7.0), delivered at a flow-rate of 1.2 ml/min. Detection was made at 280 nm, 2-[4-(2′-Furoyl)phenyl]propionic acid was used as internal standard. The calibration curve was linear from 0.2 to 10μg/ml for rufloxacin, from 0.5 to 30 μg/ml for fenbufen and from 0.2 to 10 μg/ml for felbinac, respectively. The detection limit was 0.1 μg/ml for rufloxacin. 0.3 μg/ml for fenbufen and 0.1 μg/ml for felbinac, respectively.  相似文献   

11.
A reversed-phase high-performance liquid chromatographic method for the determination of sinefungin, a new antiprotozoal drug, in rat plasma has been developed and validated. Sample preparation was performed at 4°C by deproteinization with acetonitrile. Vidarabine was used as an internal standard. Both sinefungin and vidarabine were separated on a C18 column with a mobile phase of ammmonium dihydrogenphosphate-acetonitrile (95:5, v/v) and detected by ultraviolet absorbance at 260 nm. Recoveries of sinefungin from plasma were 75 ± 3.2% and 81 ± 4.8% following dosage at concentrations of 10 μg/ml and 30 μ/ml, respectively. Using 25- μl of rat plasma the limit of quantitation was 1 μg/ml sinefungin, and the assay was linear from 1 to 30 μg/ml. This method appears sensitive enough to be used in further pharmacokinetic studies of sinefungin in animal models.  相似文献   

12.
Two different enantioselective chiral chromatographic methods were developed and validated to investigate the disposition of the β1-receptor antagonist atenolol in blood and in brain extracellular fluid of rats (tissue dialysates). System A for the plasma samples was a one-column chromatographic system with a Chiral CBH column with an aqueous buffer as mobile phase into which cellobiose was added for selective regulation of the retention of the internal standard, (S)-metoprolol. The plasma samples were analysed after a simple extraction procedure. The limit of quantitation was 0.2 μg/ml for the atenolol enantiomers. The repeatability of the medium concentration quality control plasma sample (6.0 μg rac-atenolol/ml) was 11–18% for the enantiomers. The dynamic linear range of the plasma samples was 0.5–20 μg/ml. For system B, since atenolol is an extremely hydrophilic drug, the tissue dialysate sample required a much more sensitive system as compared to the plasma samples. A coupled column system was used for peak compression of the enantiomers in the eluate after the separation on the Chiral CBH column, hence increasing the detection sensitivity. The limit of quantification was 0.045 μg/ml for the atenolol enantiomers in artificial CSF. The repeatability of the medium concentration quality control samples (0.1 and 4.0 μg rac-atenolol/ml in artificial CSF and Hepes Ringer, respectively) was 2.8–9.3% for the two enantiomers. The dynamic linear range of the brain samples was 0.05–1.0 and 0.5–20 μg/ml in artificial CSF and Hepes Ringer, respectively. Chirality 9:329–334, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

13.
A liquid chromatography-mass spectrometry based method for determination of muscarine in human urine was developed and validated. The method involved a solid phase extraction of muscarine from urine using Strata X-CW column. Separation of muscarine was achieved within 16.0 min on a reversed phase Gemini C18 analytical column (150 mm × 2.0mm i.d., 5 μm) with a mobile phase consisted of aqueous 8 mmol/L heptafluorobutyric acid and acetonitrile in a gradient mode. Mass spectrometric detection was performed at m/z 174 and m/z 216 for muscarine and acetylmuscarine (internal standard), respectively. The linearity was satisfactory with a coefficient of determination (R(2)) 0.9993 at concentration range from 0.3 ng/mL to 2.0 μg/mL, LOD and LOQ for muscarine was 0.09 ng/mL and 0.3 ng/mL, respectively. The found out recoveries of muscarine were 96% or 95% for concentration 0.3 ng/mL and 0.2 μg/mL or 2.0 μg/mL, respectively. The precision in the intra-assay-study varied from 0.48% to 1.39% and in the inter-assay-study from 2.39% to 5.49%. The accuracy ranged from -3.3% to -6%. The validation results demonstrated that the method fulfilled satisfactory requirements for precision and accuracy across the calibration curve. The applicability of the method has been demonstrated by analyzing clinical urine samples. The method offers the fast objective identification of intoxication by muscarine and can become a routine screening alternative to more difficult microscopic examination of spores in the gastric content in clinical practice.  相似文献   

14.
A high-performance liquid chromatographic method for quantitation of ibuprofen from serum and application of this method to ibuprofen disposition in the dog is described. The drug was extracted from acidified plasma with dichloromethane. The internal standard used was a methanolic solution of 4-n-butylphenylacetic acid. A μBondapak C1 column was used for analysis; the mobile phase was methanol—water—glacial acetic acid (pH 3.4) (75:24:1, v/v). A wavelength of 272 nm was used to monitor ibuprofen and the internal standard.Method sensitivity was 0.5 μg/ml serum using either 0.5 or 1.0 ml of sample, and no interference was found from endogenous compounds or other commonly used anti-inflammatory agents. The coefficients of variation of the method were 4.2% and 6.0% for samples containing 50.0 and 6.25 μg/ml of ibuprofen, respectively, and the calibration curve was linear for the range of 0.5 to 100 μg/ml. This method was demonstrated to be suitable for pharmacokinetic and/or biopharmaceutical studies of ibuprofen in man and the dog.  相似文献   

15.
A HPLC method was developed for determination of cimetidine in human plasma and urine. Plasma samples were alkalinized followed by liquid extraction with water-saturated ethyl acetate then evaporated under nitrogen. The extracts were reconstituted in mobile phase and injected onto a C(18) reversed-phase column; UV detection was set at 228 nm. Urine samples were diluted with an internal standard/mobile phase mixture (1:9) prior to injection. The lower limit of quantification in plasma and urine were 100 ng/ml and 10 microg/ml, respectively; intra- and inter-day coefficients of variation were 相似文献   

16.
We have developed and validated a sensitive and selective method for the determination of the P-glycoprotein modulator GF120918 in murine and human plasma. Chlorpromazine is used as internal standard. Sample pretreatment involves liquid–liquid extraction with tert-butyl methyl ether. Chromatographic separation is achieved by reversed-phase high-performance liquid chromatography using a Symmetry C18 column and detection was accomplished with a fluorescence detector set at excitation and emission wavelengths of 260 and 460 nm, respectively. The mobile phase consists of acetonitrile–50 mM ammonium acetate buffer, pH 4.2 (35:65, v/v). To achieve good separation from endogenous compounds and to improve the peak shape the counter-ion 1-octane sulfonic acid (final concentration 0.005 M) was added to the mobile phase. The lower limit of quantitation was 5.7 ng/ml using 200 μl of human plasma and 23 ng/ml using 50 μl of murine plasma. Within the dynamic range of the calibration curve (5.7–571 ng/ml) the accuracy was close to 100% and within-day and between-day precision were within the generally accepted 15% range. The stability of GF120918 was tested in plasma and blood from mice and humans incubated at 4°C, room temperature, and 37°C for up to 4 h. No losses were observed under these conditions. This method was applied to study the pharmacokinetics of orally administered GF120918 in humans and mice. The sensitivity of the assay was sufficient to determine the concentration in plasma samples obtained up to 24 h after drug administration.  相似文献   

17.
A method for the simultaneous direct determination of salicylate (SA), its labile, reactive metabolite, salicyl acyl glucuronide (SAG), and two other major metabolites, salicyluric acid and gentisic acid in plasma and urine is described. Isocratic reversed-phase high performance liquid chromatography (HPLC) employed a 15-cm C18 column using methanol-acetonitrile-25 mM acetic acid as the mobile phase, resulting in HPLC analysis time of less than 20 min. Ultraviolet detection at 310 nm permitted analysis of SAG in plasma, but did not provide sensitivity for measurement of salicyl phenol glucuronide. Plasma or urine samples are stabilized immediately upon collection by adjustment of pH to 3–4 to prevent degradation of the labile acyl glucuronide metabolite. Plasma is then deproteinated with acetonitrile, dried and reconstituted for injection, whereas urine samples are simply diluted prior to injection on HPLC. m-Hydroxybenzoic acid served as the internal standard. Recoveries from plasma were greater than 85% for all four compounds over a range of 0.2–20 μg/ml and linearity was observed from 0.1–200 μg/ml and 5–2000 μg/ml for SA in plasma and urine, respectively. The method was validated to 0.2 μg/ml, thus allowing accurate measurement of SA, and three major metabolites in plasma and urine of subjects and small animals administered salicylates. The method is unique by allowing quantitation of reactive SAG in plasma at levels well below 1% that of the parent compound, SA, as is observed in patients administered salicylates.  相似文献   

18.
A method is reported for the measurement of quercetin in human plasma using reversed-phase high-performance liquid chromatography (HPLC). Quercetin and kaempferol (as internal standard) were spiked into plasma samples and extracted using C18 Sep-Pak Light cartridges (efficiency > 85%). Flavonoids were eluted with aqueous acetone (50% v/v, pH 3.5), dried down and redissolved in aqueous acetone (45% v/v, pH 3.5). The increased osmolarity promoted a phase separation and the water-saturated acetone layer, containing the flavonoids, was analysed by HPLC with aqueous acetone mobile phase (45% v/v acetone in 250 mM sodium dihydrogen sulphate. The mixture was adjusted to pH 3.5 with phosphoric acid and used at a flow-rate of 1.0 ml/min) and μBondapak C18 column (150 × 3.9 mm I.D., 10 μm particle size). The detection limit (A375 nm) for quercetin in plasma was 0.1 μg/ml (300 nM). The method also detects metabolites of quercetin, although these are not yet identified.  相似文献   

19.
This paper presents an assay of clindamycin phosphate injection in human plasma or serum. A 0.5-ml volume of plasma was used with the internal standard, propranolol. The sample was loaded onto a silica extraction column. The column was washed with deionized water and then eluted with methanol. The eluates were evaporated under nitrogen gas. The residue was reconstituted with the mobile phase and injected onto the high-performance liquid chromatographic system: a 5-μm, 25 cm×4.6 mm I.D. ODS2 column was used with acetonitrile, tetrahydrofuran and 0.05 M phosphate buffer as the mobile phase and with ultraviolet detection at 204 nm. A limit of quantitation of 0.05 μg/ml was found, with a coefficient of variation of 11.6% (n=6). The linear range is between 0.05 and 20.00 μg/ml and gives a coefficient of determination (r2) of 0.9992. The method has been successfully applied to the bioavailability study of two commercial preparations of clindamycin phosphate injection (300 mg each) in twelve healthy adult male volunteers.  相似文献   

20.
The development and validation of a high-performance liquid chromatographic (HPLC) assay for determination of busulfan concentrations in human plasma for pharmacokinetic studies is described. Plasma samples containing busulfan and 1,6-bis(methanesulfonyloxy)hexane, and internal standard, were prepared by derivatization with sodium diethyldithio-carbamate (DDTC) followed by addition of methanol and extraction with ethyl acetate. The extract was dried under nitrogen and the samples reconstituted with 100 μl of methanol prior to HPLC determination. Chromatography was accomplished using a Waters NovaPak octadecylsilyl (ODS) (150×3.9 mm I.D.) analytical column, NovaPak ODS guard column, and mobile phase of methanol-water (80:20, v/v) at a flow-rate of 0.8 ml/min with UV detection at 251 nm. The limit of detection was 0.0200 μg/ml (signal-to-noise ratio of 6) with a limit of quantitation (LOQ) of 0.0600 μg/ml for busulfan in plasma. Calibration curves were linear from 0.0600 to 3.00 μg/ml in plasma (500 μl) using a weighting scheme. Precision of the assay, as represented by C.V. of the observed peak area ration values, ranged from 4.41 to 13.5% (13.5% at LOQ). No day-to-day variability was observed in predicted concentration values and the bias was low for all concentrations evaluated (bias: 0 to 4.76%; LOQ: 2.91%). The mean derivatization and extraction yield observed for busulfan in plasma at 0.200, 1.20 and 2.00 μg/ml was 98.5% (range 93.4 to 107%). Plasma samples containing potential busulfan metabolites and co-administered drugs, which may be present in clinical samples, provided no response indicating this assay procedure is selective for busulfan. This method was used to analyze plasma concentrations following administration of a 1 mg/kg oral busulfan dose.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号