首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Many extracellular matrix (ECM) proteins, particularly those in the vascular system, use their classical integrin-recognition motif Arg-Gly-Asp (RGD) to interact with integrins. The RGD motif is generally located in flexible peptide loops whose variable conformation enables the relatively few integrins with broad specificity, such as alpha(v)beta(3) and alpha(IIb)beta(3), to bind to a large variety of different ECM proteins. However, certain ECM constituents, such as collagens and laminins, interact with integrins in a conformation-dependent manner, in which both the linear structure and spatial arrangement of the polypeptides are important for the formation of active binding sites. These interactions provide high specificity for the communication of cells with distinct members of the ECM.  相似文献   

3.
4.
5.
Sphingolipid metabolism is implicated to play an important role in apoptosis. Here we show that dihydrosphingosine (DHS) and phytosphingosine (PHS), two major sphingoid bases of fungi, have potent fungicidal activity with remarkably high structural and stereochemical specificity against Aspergillus nidulans. In fact, only naturally occurring DHS and PHS are active. Further analysis revealed that DHS and PHS induce rapid DNA condensation independent of mitosis, large-scale DNA fragmentation, and exposure of phosphatidylserine, all common morphological features characteristic of apoptosis, suggesting that DHS and PHS induce apoptosis in A. nidulans. The finding that DNA fragmentation requires protein synthesis, which implies that an active process is involved, further supports this proposition. The induction of apoptosis by DHS and PHS is associated with the rapid accumulation of reactive oxygen species (ROS). However, ROS are not required for apoptosis induced by DHS and PHS, as scavenging of ROS by a free radical spin trap has no effect. We further demonstrate that apoptosis induced by DHS and PHS is independent of metacaspase function but requires mitochondrial function. Together, the results suggest that DHS and PHS induce a type of apoptosis in A. nidulans most similar to the caspase-independent apoptosis observed in mammalian systems. As A. nidulans is genetically tractable, this organism should be an ideal model system for dissecting sphingolipid signaling in apoptosis and, importantly, for further elucidating the molecular basis of caspase-independent apoptosis.  相似文献   

6.
7.
The fatty acid and long-chain base composition of five major gangliosides from human stomach and small and large intestine mucosa were analyzed with gas chromatography. All the gangliosides greatly resembled each other in the fatty acid pattern. The main fatty acids were C16:0, C18:0 and C24:0. No hydroxy fatty acids could be detected. In all the gangliosides 4-sphingenine was the predominant long-chain base (70–75%). About 15% of the long-chain bases had 20 carbon atoms in their chain. No trihydroxy long-chain bases could be detected.  相似文献   

8.
The nature of endogenous acceptor molecules implicated in the membrane-directed synthesis of the polysialic acid (polySia) capsule in Escherichia coli K1 serotypes is not known. The capsule contains at least 200 sialic acid (Sia) residues that are elongated by the addition of new Sia residues to the nonreducing termini of growing nascent chains (Rohr, T. E., and Troy, F. A. (1980) J. Biol. Chem. 255, 2332-2342). Presumably, chain growth starts when activated Sia residues are transferred to acceptors that are not already sialylated. In the present study, we used an acapsular mutant defective in synthesis of CMP-NeuAc to label acceptors with [14C]NeuAc and an anti-polySia-specific antibody (H.46) to identify the molecules to which the polySia was attached. [14C]Sia-labeled acceptors were solubilized with 2% Triton X-100, immunoprecipitated with H.46, and partially depolymerized with poly-alpha-2,8-endo-N-acetylneuraminidase. Approximately 5% of the [14C]Sia incorporated remained attached to endogenous acceptors. Double-labeling experiments were used to show that the non-Sia moiety of the acceptor was labeled in vivo with [14C]leucine and elongated in vitro with CMP-[3H]NeuAc. Concomitant with desialylation of the [3H]polySia-[14C]Leu acceptor was the appearance of a new [14C]Leu-labeled protein at 20 kDa. After strong acid hydrolysis, the 20-kDa labeled protein was shown to contain [14C]Leu. The acceptor molecules were not labeled metabolically with D-[3H]GlcN, 35SO4, or 32PO4, indicating that they do not appear to contain lipopolysaccharide, peptidoglycan, phosphatidic acid, or phospholipid. Based on these results, we conclude that the endogenous acceptor molecule is a membrane protein of about 20 kDa. The nature of attachment of polySia to acceptor is unknown. There are only 400-500 acceptor molecules/cell, which is about 100-fold fewer than the 50,000 polySia chains/cell. This suggests that each acceptor molecule may participate in the shuttling of about 100 polySia chains/cell. We hypothesize that the acceptor protein may function to translocate polySia chains from their site of synthesis on the cytoplasmic surface of the inner membrane to the periplasm.  相似文献   

9.
10.
The binding ratio, Γa, for several long-chain amines to calf-thymus DNA was measured as function of the ligand concentration, C, using the equilibrium dialysis method. The different amines used in the binding experiments at constant temperature were dodecyl trimethyl ammonium bromide (DTAB), myristyl trimethyl ammonium bromide (MTAB), cetyl trimethyl ammonium bromide (CTAB), and cetyl pyridinium chloride (CPCL). The formation and dissociation of the saturated DNA–amine complex were reversible. The initial slope of the binding isotherm decreased sharply with the reduction of the electrostatic effect as a result of the increase of the ionic strength of the medium. A sharp inflexion region was noted in the binding isotherm where the ligands bound in significant numbers may undergo hydrophobic interactions with each other. Γa increased with C until a maximum value, Γam, was reached, beyond which binding slowly decreased with an increase of concentration. Both Γam and Γa increased significantly with the increase of the hydrocarbon chain length of a ligand. The free energy change ΔGm for each saturated DNA–amine complex was evaluated on the basis of a thermodynamic relation and the standard state for binding was defined. The average free energy change for the binding per CH2 group of the amine was found to be ?1550 cal/mol. The difference between ΔGm for CTAB and CPCL was examined on the basis of the structural difference of their head groups. The binding isotherms for MTAB and CPCL were obtained from the binding data at 15, 30, and 45°C. The binding increased with increasing temperature. From the plot of ΔGm/T vs 1/T, the changes in enthalpy and entropy due to the binding were evaluated for MTAB and CPCL. The binding reactions in these two cases were driven primarily by the entropy change due to the hydrophobic interaction. Standard free energy changes ΔG0m for the unsaturated complexes were close to ΔGm for the saturated complexes. The binding isotherms also depended on the nature of the neutral salt of the medium. At a given salt concentration, the order of the binding of the inorganic salts was as follows: KCl > NaCl > LiCl > Na2SO4 > MgCl2. The effect of pH on binding was also examined. The importance of these results on the formation of the reconstituted and natural nucleohistone complexes is discussed.  相似文献   

11.
12.
Sphingomyelin from the guinea pig Harderian gland was isolated and characterized. The purified sphingomyelin gave a broad spot on thin-layer chromatography. The fatty acid composition of the whole sphingomyelin was 71% nonhydroxy acids and 29% 2-hydroxy acids. Methyl-branched fatty acids were only 2% of the total acids. The long-chain bases were composed of straight-chain sphingenines (50%) and sphinganines (6%). Methyl-branched long-chain bases were 44% of the bases. The sphingomyelin was further separated into four fractions (I, II, III, IV) by high-performance liquid chromatography. The ratio of fractions I, II, III, and IV was approximately 2:5:2:1, respectively. The fatty acids of fractions I and II consisted of nonhydroxy acids and those of fractions III and IV were 2-hydroxy acids. The long-chain bases of fractions I and III were sphinganines including 10-, 9-, and 8-methylsphinganines and anteiso-sphinganines. These methyl-branched bases occupied about 70% of the total sphinganines. The long-chain bases of fractions II and IV consisted of sphingenines. The methyl-branched unsaturated bases were only 30% of the total sphingenines, all in the anteiso-form. Thus, the sphingomyelin obtained from guinea pig Harderian gland had complex compositions of fatty acids and long-chain bases, and half the number of long-chain bases had methyl branches. The methyl-branched fatty acids were only a minor component. These characteristics are similar to those of cerebrosides isolated from the same source.  相似文献   

13.
Amphiphilic compounds such as long-chain acyl carnitines accumulate in ischemic myocardium and potentially contribute to the myocardial damage. To characterize alterations in membrane molecular dynamics produced by palmitoylcarnitine, human erythrocytes were spin-labeled with 5-doxylstearic acid, and membrane fluidity was quantified by measuring the changes in the order parameter derived from ESR spectra. Palmitoylcarnitine induced triphasic alterations in membrane fluidity of human erythrocytes. The membrane fluidity increased for 5 min, then decreased in a concentration-dependent manner. At higher concentrations (100 and 150 microM) of palmitoylcarnitine, membrane fluidity increased again after 30 and 20 min of the incubation, respectively. Addition of 2.8 mM CaCl2 resulted in a significant decrease in membrane fluidity and enhanced the alterations in membrane fluidity caused by palmitoylcarnitine. The results suggest that alterations in molecular dynamics are one mechanism through which long-chain acyl carnitine could play an important role in ischemic injury.  相似文献   

14.
Amphiphilic compounds such as long-chain acyl carnitines accumulate in ischemic myocardium and potentially contribute to the myocardial damage. To characterize alterations in membrane molecular dynamics produced by palmitoylcarnitine, human erythrocytes were spin-labeled with 5-doxylstearic acid, and membrane fluidity was quantified by measuring the changes in the order parameter derived from ESR spectra. Palmitoylcarnitine induced triphasic alterations in membrane fluidity of human erythrocytes. The membrane fluidity increased for 5 min, then decreased in a concentration-dependent manner. At higher concentrations (100 and 150 μM) of palmitoylcarnitine, membrane fluidity increased again after 30 and 20 min of the incubation, respectively. Addition of 2.8 mM CaCl2 resulted in a significant decrease in membrane fluidity and enhanced the alterations in membrane fluidity caused by palmitoylcarnitine. The results suggest that alterations in molecular dynamics are one mechanism through which long-chain acyl carnitine could play an important role in ischemic injury.  相似文献   

15.
16.
The effect of copper on membrane enzymes   总被引:3,自引:0,他引:3  
  相似文献   

17.
18.
Sphingoid long-chain bases (sphinganine and sphingosine) have recently been shown to inhibit protein kinase C both in vitro [Y. Hannun et al. (1986) J. Biol. Chem. 261, 12604-12609] and in intact human neutrophils, in which they block activation of the superoxide-generating respiratory burst [E. Wilson et al. (1986) J. Biol. Chem. 261, 12616-12623]. In the present study we have used sphingosine to investigate the pathways for agonist-induced secretion of neutrophil granule contents. Induction of secretion of the specific granule component lactoferrin by a variety of agonists [phorbol 12-myristate-13-acetate (PMA), formyl-methionyl-leucyl-phenylalanine (fMLP), and calcium ionophore A23187] was completely inhibited by sphingosine with an ED50 of 6 to 10 microM. PMA-induced secretion of lysozyme (present in both the azurophilic and specific granules) was completely blocked with an ED50 of 10 microM, whereas fMLP-induced secretion was only about 50% inhibited. Secretion of the azurophilic granule proteins beta-glucuronidase and myeloperoxidase was activated by fMLP and A23187, but not by PMA, and was not affected by sphingosine. The use of A23187 in the presence of sphingosine allowed differentiation between calcium activation of protein kinase C-dependent versus-independent pathways. The effect of sphingosine was not mediated by neutralizing intracellular acidic compartments, since treatment of neutrophils with inhibitory concentrations of sphingosine did not significantly alter the uptake of labeled methylamine. We conclude that at least two mechanisms participate in the regulation of specific and azurophilic granule secretion, respectively: a protein kinase C-dependent pathway and a calcium-dependent pathway which does not involve protein kinase C.  相似文献   

19.
Cationic and uncharged forms of a tertiary amine local anesthetic are reported to have different properties and potencies as nerve blocking agents. However, the relative capacities of each form of the local anesthetic to perturb the properties of different model membrane systems is unknown. For this reason we have studied the effects of uncharged lidocaine (high pH) and its quaternary amine analogue (W49091) on the phase transition properties of DMPS, DPPE and DPPC liposomes using high-sensitivity differential scanning calorimetry. We report that neutral lidocaine interacts similarly with all three phospholipids. This interaction results in a decrease in the temperature of the gel å liquid crystalline phase transition (Tm), an increase in the enthalpy of the transition (ΔH), and a slight decrease in the cooperativity of melting. Quaternary lidocaine (W49091), on the other hand, interacts significantly with only DMPS; the result being again a decrease in the temperature of DMPS melting, an increase in ΔH, and a slight decrease in the cooperativity of the phase transition. These results are interpreted to indicate that uncharged lidocaine enters the membrane during the DPPE and DPPC phase transitions. In the case of DMPS, an influx of both charged forms of lidocaine must occur at Tm. These anesthetic fluxes at the lipid's phase transition are suggested to be responsible for the observed elevated enthalpies of the respective transitions. The observation that the cationic form of lidocaine does not significantly modify the behavior of DPPC and DPPE liposomes suggests that these lipids are not important components of the anesthetic's site in nerve membranes. However, the dramatic perturbation of the properties of DMPS by W49091 suggests that phosphatidylserine may comprise part of this inhibitory site.  相似文献   

20.
We have previously shown that proteins such as beta-lactoglobulin and lysozyme insert into monoglyceride monolayers and are able to induce an L(beta) to coagel phase transition in monoglyceride bilayers. These studies gave a first indication that protein stability could be an important factor for these interactions. This study therefore aims at further investigating the potential role of protein stability on protein-monoglyceride interactions. To this end we studied the interaction of stable and destabilized alpha-lactalbumin with monostearoylglycerol. Our results show that protein stability is important for the insertion of proteins into a monostearoylglycerol monolayer, such that the lower the stability of the protein the better the protein inserts. In marked contrast to beta-lactoglobulin and lysozyme we found that destabilized alpha-lactalbumin does not induce the L(beta) to coagel phase transition in monoglyceride bilayers. We propose that this is due to an increased surface coverage by the protein which could result from the unfolding of the protein upon binding to the interface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号