首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Virulence-attenuating hypoviruses of the species Cryphonectria hypovirus 1 (CHV1) encode a papain-like protease, p29, that shares similarities with the potyvirus-encoded suppressor of RNA silencing HC-Pro. We now report that hypovirus CHV1-EP713-encoded p29 can suppress RNA silencing in the natural host, the chestnut blight fungus Cryphonectria parasitica. Hairpin RNA-triggered silencing was suppressed in C. parasitica strains expressing p29, and transformation of a transgenic green fluorescent protein (GFP)-silenced strain with p29 resulted in an increased number of transformants with elevated GFP expression levels. The CHV1-EP713 p29 protein was also shown to suppress both virus-induced and agroinfiltration-induced RNA silencing and systemic spread of silencing in GFP-expressing transgenic Nicotiana benthamiana line 16c plants. The demonstration that a mycovirus encodes a suppressor of RNA silencing provides circumstantial evidence that RNA silencing in fungi may serve as an antiviral defense mechanism. The observation that a phylogenetically conserved protein of related plant and fungal viruses functions as a suppressor of RNA silencing in both fungi and plants indicates a level of conservation of the mechanisms underlying RNA silencing in these two groups of organisms.  相似文献   

3.
Cao X  Zhou P  Zhang X  Zhu S  Zhong X  Xiao Q  Ding B  Li Y 《Journal of virology》2005,79(20):13018-13027
RNA silencing is a mechanism which higher plants and animals have evolved to defend against viral infection in addition to regulation of gene expression for growth and development. As a counterdefense, many plant and some animal viruses studied to date encode RNA silencing suppressors (RSS) that interfere with various steps of the silencing pathway. In this study, we report the first identification of an RSS from a plant double-stranded RNA (dsRNA) virus. Pns10, encoded by S10 of Rice dwarf phytoreovirus (RDV), exhibited RSS activity in coinfiltration assays with the reporter green fluorescent protein (GFP) in transgenic Nicotiana benthamiana line 16c carrying GFP. The other gene segments of the RDV genome did not have such a function. Pns10 suppressed local and systemic silencing induced by sense RNA but did not interfere with local and systemic silencing induced by dsRNA. Expression of Pns10 also increased the expression of beta-glucuronidase in transient assays and enhanced Potato virus X pathogenicity in N. benthamiana. Collectively, our results establish Pns10 as an RSS encoded by a plant dsRNA virus and further suggest that Pns10 targets an upstream step of dsRNA formation in the RNA silencing pathway.  相似文献   

4.
5.
6.
大麦黄矮病毒(barley yellow dwarf virus,BYDV)属黄症病毒科家族,其基因组包含6个开放阅读框(open reading frames,ORFs).将BYDV的6个基因分别克隆到pWEIMING101载体上,得到重组基因.电击转化农杆菌后,利用农杆菌瞬时表达方法渗透注射转GFP基因的本氏烟草16c植株的叶片,在长波长紫外灯下观察GFP的表达,并通过Northern blot证明所得现象.研究结果表明,BYDV的PAV株系ORF4编码的运动蛋白(movement protein,MP)是RNA沉默抑制因子,其表达可以抑制局部和系统RNA沉默.BYDV-MP与GFP的双链RNA(dsGFP)共表达后仍能抑制RNA沉默,荧光强度与叶片中GFP的mRNA和其沉默降解形成的siRNA的量有对应关系,其N端核定位序列对抑制局部基因沉默起主要作用,第5、6位氨基酸是抑制基因沉默的关键氨基酸.BYDV-MP单独渗透注射的部位均产生细胞死亡.  相似文献   

7.
A green fluorescent protein (GFP) transgene under the control of the 35S cauliflower mosaic virus (CaMV) promoter was introduced by Agrobacterium-mediated transformation into Nicotiana benthamiana to generate fourteen transgenic lines. Homozygous lines that contained one or two copies of the transgene showed great variation of GFP expression under ultraviolet (UV) light, which allowed classification into three types of transgenic plants. Plants from more than half of the transgenic lines underwent systemic RNA silencing and produced short interfering RNA (siRNA) as young seedlings, while plants of the remaining lines developed, in a spontaneous manner, defined GFP-silenced zones on their leaves, mostly in the form of circular spots that expanded to about 4-7 mm in size. In some of the latter lines, the GFP-silenced spots remained stable, but no systemic silencing occurred. Here we characterize this phenomenon, which we term spontaneous short-range silencing (SSRS). Biochemical analysis of silenced spot tissue did not reveal detectable levels of siRNA. However, agro-infiltration with the suppressor proteins P19 of cymbidium ring spot virus (CymRSV), HC-Pro of tobacco etch virus (TEV), and crosses to a P19 transgenic line, nevertheless suggests that low concentrations of siRNA may have a functional role in the locally silenced zone. We propose that small alterations in the steady-state concentration of siRNAs and their cognate mRNA are decisive with regard to whether silencing remains local or spreads in a systemic manner.  相似文献   

8.
9.
We have recently described an efficient transient expression system mediated by Agrobacterium tumefaciens for the production of HIV-1 Nef protein in Nicotiana benthamiana plants. In order to enhance the yield of recombinant protein we assayed the effect of three gene-silencing viral suppressor proteins (P25 of Potato Virus X, P19 of Artichoke Mottled Crinckle virus and Tomato Bushy Stunt virus) on Nef expression levels. Results demonstrated that AMCV-P19 gave the highest Nef yield (1.3% of total soluble protein) and that this effect was correlated to a remarkable decrease of Nef-specific small interfering RNAs (siRNAs) indicating an effective modulation of RNA silencing mechanisms. Here we report additional data on the production of different heterologous proteins including human immunoglobulin heavy and light chains and a virus coat protein that demonstrate the robustness of this co-agroinfiltration expression system boosted by the AMCV-P19 gene-silencing suppressor.  相似文献   

10.
11.
The Tobacco mosaic virus (TMV) 126-kDa protein is a suppressor of RNA silencing previously shown to delay the silencing of transgenes in Nicotiana tabacum and N. benthamiana. Here, we demonstrate that expression of a 126-kDa protein-green fluorescent protein (GFP) fusion (126-GFP) in N. tabacum increases susceptibility to a broad assortment of viruses, including Alfalfa mosaic virus, Brome mosaic virus, Tobacco rattle virus (TRV), and Potato virus X. Given its ability to enhance TRV infection in tobacco, we tested the effect of 126-GFP expression on TRV-mediated virus-induced gene silencing (VIGS) and demonstrate that this protein can enhance silencing phenotypes. To explain these results, we examined the poorly understood effect of suppressor dosage on the VIGS response and demonstrated that enhanced VIGS corresponds to the presence of low levels of suppressor protein. A mutant version of the 126-kDa protein, inhibited in its ability to suppress silencing, had a minimal effect on VIGS, suggesting that the suppressor activity of the 126-kDa protein is indeed responsible for the observed dosage effects. These findings illustrate the sensitivity of host plants to relatively small changes in suppressor dosage and have implications for those interested in enhancing silencing phenotypes in tobacco and other species through VIGS.  相似文献   

12.
Cui X  Li G  Wang D  Hu D  Zhou X 《Journal of virology》2005,79(16):10764-10775
Our previous results demonstrated that the DNAbeta satellite (Y10beta) associated with Tomato yellow leaf curl China virus Y10 isolate (TYLCCNV-Y10) is essential for induction of leaf curl symptoms in plants and that transgenic expression of its betaC1 gene in Nicotiana plants induces virus-like symptoms. In the present study, in vitro DNA binding activity of the betaC1 proteins of Y10beta and DNAbeta (Y35beta) found in the Tobacco curly shoot virus Y35 isolate (TbCSV-Y35) were studied following their expression as six-His fusion proteins in Escherichia coli. Electrophoretic mobility shift assays and UV cross-linking experiments revealed that betaC1 proteins could bind both single-stranded and double-stranded DNA without size or sequence specificity. Suppression of green fluorescent protein (GFP) transgene silencing was observed with the new leaves of GFP-expressing Nicotiana benthamiana plants coinoculated by TYLCCNV-Y10 plus Y10beta or by TbCSV-Y35 plus Y35beta. In a patch agroinfiltration assay, the transiently expressed betaC1 gene of Y10beta or Y35beta was able to suppress host RNA silencing activities and permitted the accumulation of high levels of GFP mRNA in the infiltrated leaf patches of GFP transgenic N. benthamiana plants. The betaC1 protein of Y10beta accumulated primarily in the nuclei of plant and insect cells when fused with beta-glucuronidase or GFP and immunogold labeling showed that the betaC1 protein is present in the nuclei of infected N. benthamiana plants. A mutant version of Y10beta carrying the mutations within the putative nuclear localization sequence of the Y10 betaC1 protein failed to induce disease symptoms, suppress RNA silencing, or accumulate in the nucleus, suggesting that nuclear localization of the betaC1 protein is a key requirement for symptom induction and silencing suppression.  相似文献   

13.
As a part of a project to develop a plant-made plague vaccine, we expressed the Yersinia pestis F1-V antigen fusion protein in tomato. We discovered that in some of these plants the expression of the f1-v gene was undetectable in leaves and fruit by ELISA, even though they had multiple copies of f1-v according to Southern-blot analysis. A likely explanation of these results is the phenomenon of RNA silencing, a group of RNA-based processes that produces sequence-specific inhibition of gene expression and may result in transgene silencing in plants. Here we report the reversion of the f1-v gene silencing in transgenic tomato plants through two different mechanisms. In the P19-dependent Reversion or Type I, the viral suppressor of gene silencing, P19, induces the reversion of gene silencing. In the P19-independent Reversion or Type II, the f1-v gene expression is restored after the substantial loss of gene copies as a consequence of transgene segregation in the progeny. The transient and stable expression of the p19 gene driven by a constitutive promoter as well as an ethanol inducible promoter induced a P19-dependent reversion of f1-v gene silencing. In particular, the second generation plant 3D1.6 had the highest P19 protein levels and correlated with the highest F1-V protein accumulation, almost a three-fold increase of F1-V protein levels in fruit than that previously reported for the non-silenced F1-V elite tomato lines. These results confirm the potential exploitation of P19 to substantially increase the expression of value-added proteins in plants.  相似文献   

14.
Systemic symptoms induced on Nicotiana tabacum cv. Xanthi by Tobacco mosaic virus (TMV) are modulated by one or both amino-coterminal viral 126- and 183-kDa proteins: proteins involved in virus replication and cell-to-cell movement. Here we compare the systemic accumulation and gene silencing characteristics of TMV strains and mutants that express altered 126- and 183-kDa proteins and induce varying intensities of systemic symptoms on N. tabacum. Through grafting experiments, it was determined that M(IC)1,3, a mutant of the masked strain of TMV that accumulated locally and induced no systemic symptoms, moved through vascular tissue but failed to accumulate to high levels in systemic leaves. The lack of M(IC)1,3 accumulation in systemic leaves was correlated with RNA silencing activity in this tissue through the appearance of virus-specific, approximately 25-nucleotide RNAs and the loss of fluorescence from leaves of transgenic plants expressing the 126-kDa protein fused with green fluorescent protein (GFP). The ability of TMV strains and mutants altered in the 126-kDa protein open reading frame to cause systemic symptoms was positively correlated with their ability to transiently extend expression of the 126-kDa protein:GFP fusion and transiently suppress the silencing of free GFP in transgenic N. tabacum and transgenic N. benthamiana, respectively. Suppression of GFP silencing in N. benthamiana occurred only where virus accumulated to high levels. Using agroinfiltration assays, it was determined that the 126-kDa protein alone could delay GFP silencing. Based on these results and the known synergies between TMV and other viruses, the mechanism of suppression by the 126-kDa protein is compared with those utilized by other originally characterized suppressors of RNA silencing.  相似文献   

15.
RNA silencing is a natural defense mechanism against genetic stress factors, including viruses. A mutant hordeivirus (Barley stripe mosaic virus [BSMV]) lacking the gammab gene was confined to inoculated leaves in Nicotiana benthamiana, but systemic infection was observed in transgenic N. benthamiana expressing the potyviral silencing suppressor protein HCpro, suggesting that the gammab protein may be a long-distance movement factor and have antisilencing activity. This was shown for gammab proteins of both BSMV and Poa semilatent virus (PSLV), a related hordeivirus. Besides the functions in RNA silencing suppression, gammab and HCpro had analogous effects on symptoms induced by the hordeiviruses. Severe BSMV-induced symptoms were correlated with high HCpro concentrations in the HCpro-transgenic plants, and substitution of the gammab cistron of BSMV with that of PSLV led to greatly increased symptom severity and an altered pattern of viral gene expression. The efficient systemic infection with the chimera was followed by the development of dark green islands (localized recovery from infection) in leaves and exemption of new developing leaves from infection. Recovery and the accumulation of short RNAs diagnostic of RNA silencing in the recovered tissues in wild-type N. benthamiana were suppressed in HCpro-transgenic plants. These results provide evidence that potyviral HCpro and hordeivirus gammab proteins contribute to systemic viral infection, symptom severity, and RNA silencing suppression. HCpro's ability to suppress the recovery of plants from viral infection emphasizes recovery as a manifestation of RNA silencing.  相似文献   

16.
17.
18.
19.
A chemical-regulated inducible RNAi system in plants   总被引:21,自引:0,他引:21  
Constitutive expression of an intron-containing self-complementary 'hairpin' RNA (ihpRNA) has recently been shown to efficiently silence target genes in transgenic plants. However, this technique cannot be applied to genes whose silencing may block plant regeneration or result in embryo lethality. To obviate these potential problems, we have used a chemical-inducible Cre/loxP (CLX) recombination system to trigger the expression of an intron-containing inverted-repeat RNA (RNAi) in plants. A detailed characterization of the inducible RNAi system in transgenic Arabidopsis thaliana and Nicotiana benthamiana plants demonstrated that this system is stringently controlled. Moreover, it can be used to induce silencing of both transgenes and endogenous genes at different developmental stages and at high efficiency and without any detectable secondary affects. In addition to inducing complete silencing, the RNAi can be produced at various times after germination to initiate and obtain different degrees of gene silencing. Upon induction, transgenic plants with genetic chimera were obtained as demonstrated by PCR analysis. Such chimeric plants may provide a useful system to study signaling mechanisms of gene silencing in Arabidopsis as well as other cases of long-distance signaling without grafting. The merits of using the inducible CLX system for RNAi expression are discussed.  相似文献   

20.
Recombinant plant viruses have the propensity to remove foreign inserts during replication. This process is virus-specific and occurs in a host-dependent manner. In the present study, we investigated the integrity of foreign inserts in recombinant plant viruses using a model system consisting of Tomato bushy stunt virus (TBSV) and its defective interfering RNA (DI). These were tested in Nicotiana benthamiana plants that were either wild type or transgenic for the green fluorescent protein (GFP) gene. GFP-derived inserts were retained in the recombinant TBSV and DI population that were inoculated onto GFP-transgenic N. benthamiana plants in which silencing of the GFP transgene was initiated, but they were removed from the virus and DIs that were maintained on wild-type plants. A foreign insert derived from an endogenous N. benthamiana gene encoding the H subunit of the magnesium chelatase (NbChlH) was deleted, whereas the fragment of an RNA-dependent RNA polymerase gene (NbRdRP1m) was retained in the recombinant TBSV population. These results demonstrate that the recombination of TBSV to remove nonviral fragments is influenced by silencing and the type of inserts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号