首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The introduction of organisms within the native range of wild conspecifics is a widespread phenomenon and locally modifies patterns in intraspecific diversity. However, our knowledge of the resulting ecological effects, as opposed to those caused by invasion‐induced changes in interspecific diversity, is still limited. Here, we investigated the ecological effects of native and non‐native invaders across levels of biological organisations and recipient organisms using the global and long history introductions of salmonids. Our meta‐analysis demonstrated that the global effects of native species introductions exceeded those induced by non‐native invaders. The impacts of native invaders were primarily manifested at the individual level on wild conspecifics, but remained largely unexplored on other native organisms and at the community and ecosystem levels. Overlooked and poorly appreciated, quantifying the impacts of native invaders has important implications because human‐assisted introductions of domesticated organisms are ubiquitous and likely to proliferate in the future.  相似文献   

2.
Reducing the abundances of invasive species by removals aims to minimize their ecological impacts and enable ecosystem recovery. Removal methods are usually selective, modifying phenotypic traits in the managed populations. However, there is little empirical evidence of how removal‐driven changes in multiple phenotypic traits of surviving individuals of invasive species can affect ecosystem functioning and recovery. Overcoming this knowledge gap is highly relevant because individuals are the elemental units of ecological processes and so integrating individual‐level responses into the management of biological invasions could improve their efficiency. Here we provide novel demonstration that removals by trapping, angling and biocontrol from lakes of the globally invasive crayfish Procambarus clarkii induced substantial changes in multiple phenotypic traits. A mesocosm experiment then revealed that these changes in phenotypic traits constrain recovery of basic ecosystem functions (decomposition of organic matter, benthic primary production) by acting in the opposite direction than the effects of reduced invader abundance. However, only minor ecological impacts of invader abundance and phenotypic traits variation remained a year after its complete eradication. Our study provides quantitative evidence to an original idea that removal‐driven trait changes can dampen recovery of invaded ecosystems even when the abundance of invasive species is substantially reduced. We suggest that the phenotypic responses of invaders to the removal programme have strong effects on ecosystem recovery and should be considered within the management of biological invasions, particularly when complete eradication is not achievable.  相似文献   

3.
Ecosystems are exposed to multiple stressors which can compromise functioning and service delivery. These stressors often co‐occur and interact in different ways which are not yet fully understood. Here, we applied a population model representing a freshwater amphipod feeding on leaf litter in forested streams. We simulated impacts of hypothetical stressors, individually and in pairwise combinations that target the individuals' feeding, maintenance, growth and reproduction. Impacts were quantified by examining responses at three levels of biological organisation: individual‐level body sizes and cumulative reproduction, population‐level abundance and biomass and ecosystem‐level leaf litter decomposition. Interactive effects of multiple stressors at the individual level were mostly antagonistic, that is, less negative than expected. Most population‐ and ecosystem‐level responses to multiple stressors were stronger than expected from an additive model, that is, synergistic. Our results suggest that across levels of biological organisation responses to multiple stressors are rarely only additive. We suggest methods for efficiently quantifying impacts of multiple stressors at different levels of biological organisation.  相似文献   

4.
5.
Pacific walrus: Benthic bioturbator of Beringia   总被引:1,自引:0,他引:1  
The dependency of walruses on sea ice as habitat, the extent of their feeding, their benthic bioturbation and consequent nutrient flux suggest that walruses play a major ecological role in Beringia. This suggestion is supported by several lines of evidence, accumulated during more than three decades of enquiry and leading to the hypothesis that positive feedbacks of walrus feeding strongly influence productivity and ecological function via benthic bioturbation and nutrient flux. Walruses annually consume an estimated 3 million metric tons of benthic biomass. Walrus prey species inhabit patches across the shelf according to sediment type and structure. Side-scan sonar and our calculations indicate that the area affected by walrus feeding is in the order of thousands of square kilometers per year. Annual to long-term walrus bioturbation results in significant, large-scale changes in sediment and biological-community structure, and magnifies nutrient flux from sediment pore water to the water column by about two orders of magnitude over wide areas. The combined effects of walrus feeding must be placed in the context of long-term, regional climate changes and responses. Should sea ice continue to move northward as a result of climate change, the walrus' ecological role could be diminished or lost, the benthic ecosystem could be fundamentally altered and native subsistence hunters would be deprived of important resources.  相似文献   

6.
Differences in animal distributions and metabolic demands can influence energy and nutrient flow in an ecosystem. Through taxa-specific nutrient consumption, storage, and remineralization, animals may influence energy and nutrient pathways in an ecosystem. Here we show these taxa-specific traits can drive biogeochemical cycles of nutrients and alter ecosystem primary production and metabolism, using riverine systems that support heterogeneous freshwater mussel aggregations. Freshwater unionid mussels occur as distinct, spatially heterogeneous, dense aggregations in rivers. They may influence rates of production and respiration because their activities are spatially concentrated within given stream reaches. Previous work indicates that mussels influence nutrient limitation patterns, algal species composition, and producer and primary consumer biomass. Here, we integrate measures of organismal rates, stoichiometry, community-scaled rates, and ecosystem rates, to determine the relative source–sink nutrient dynamics of mussel aggregations and their influence on net ecosystem processes. We studied areas with and without mussel aggregations in three nitrogen-limited rivers in southeastern Oklahoma, USA. We measured respiration and excretion rates of mussels and collected a subset of samples for tissue chemistry and for thin sectioning of the shell to determine growth rates at each site. This allowed us to assess nutrient remineralization and nutrient sequestration by mussels. These rates were scaled to the community. We also measured stream metabolism at three sites with and without mussels. We demonstrated that mussel species have distinct stoichiometric traits, vary in their respiration rates, and that mussel aggregations influence nutrient cycling and productivity. Across all mussel aggregations, we found that mussels excreted more nitrogen than they sequestered into tissue and excreted more phosphorus than they sequestered except at one site. Furthermore, gross primary productivity was significantly greater at reaches with mussels. Collectively, our results indicate that mussels have ecosystem-level impacts on nutrient availability and production in nutrient-limited rivers. Within these streams, mussels are affecting the movement of nutrients and altering nutrient spiralling.  相似文献   

7.
Biological invasions create complex ecological and societal issues worldwide. Most of the knowledge about invasions comes only from successful invaders, but less is known about which processes determine the differential success of invasions. In this review, we develop a framework to identify the main dimensions driving the success and failure of invaders, including human influences, characteristics of the invader, and biotic interactions. We apply this framework by contrasting hypotheses and available evidence to explain variability in invasion success for 12 salmonids introduced to Chile. The success of Oncorhynchus mykiss and Salmo trutta seems to be influenced by a context-specific combination of their phenotypic plasticity, low ecosystem resistance, and propagule pressure. These well-established invaders may limit the success of subsequently introduced salmonids, with the possible exception of O. tshawytscha, which has a short freshwater residency and limited spatial overlap with trout. Although propagule pressure is high for O. kisutch and S. salar due to their intensive use in aquaculture, their lack of success in Chile may be explained by environmental resistance, including earlier spawning times than in their native ranges, and interactions with previously established and resident Rainbow Trout. Other salmonids have also failed to establish, and they exhibit a suite of ecological traits, environmental resistance, and limited propagule pressure that are variably associated with their lack of success. Collectively, understanding how the various drivers of invasion success interact may explain the differential success of invaders and provide key guidance for managing both positive and negative outcomes associated with their presence.  相似文献   

8.
Invasion by common carp (Cyprinus carpio) and red swamp crayfish (Procambarus clarkii) in shallow lakes have been followed by stable-state changes from a macrophyte-dominated clear water state to a phytoplankton-dominated turbid water state. Both invasive carp and crayfish are, therefore, possible drivers for catastrophic regime shifts. Despite these two species having been introduced into ecosystems world-wide, their relative significance on regime shifts remains largely unexplored. We compared the ecological impacts of carp and crayfish on submerged macrophytes, water quality, phytoplankton, nutrient dynamics, zooplankton and benthic macroinvertebrates by combining an enclosure experiment and a meta-analysis. The experiment was designed to examine how water quality and biological variables responded to increasing carp or crayfish biomass. We found that even at a low biomass, carp had large and positive impacts on suspended solids, phytoplankton and nutrients and negative impacts on benthic macroinvertebrates. In contrast, crayfish had a strong negative impact on submerged macrophytes. The impacts of crayfish on macrophytes were significantly greater than those of carp. The meta-analysis showed that both carp and crayfish have significant effects on submerged macrophytes, phytoplankton, nutrient dynamics and benthic macroinvertebrates, while zooplankton are affected by carp but not crayfish. It also indicated that crayfish have significantly greater impacts on macrophytes relative to carp. Overall, the meta-analysis largely supported the results of the experiment. Taken as a whole, our results show that both carp and crayfish have profound effects on community composition and ecosystem processes through combined consequences of bioturbation, excretion, consumption and non-consumptive destruction. However, key variables (e.g. macrophytes) relating to stable-state changes responded differently to increasing carp or crayfish biomass, indicating that they have differential ecosystem impacts.  相似文献   

9.
Biological assemblages are constantly undergoing change, with species being introduced, extirpated and experiencing shifts in their densities. Theory and experimentation suggest that the impacts of such change on ecosystem functioning should be predictable based on the biological traits of the species involved. However, interspecific interactions could alter how species affect functioning, with the strength and sign of interactions potentially depending on environmental context (e.g. homogenous vs. heterogeneous conditions) and the function considered. Here, we assessed how concurrent changes to the densities of two common marine benthic invertebrates, Corophium volutator and Hediste diversicolor, affected the ecological functions of organic matter consumption and benthic-pelagic nutrient flux. Complementary experiments were conducted within homogenous laboratory microcosms and naturally heterogeneous field plots. When the densities of the species were increased within microcosms, interspecific interactions enhanced effects on organic matter consumption and reduced effects on nutrient flux. Trait-based predictions of how each species would affect functioning were only consistently supported when the density of the other species was low. In field plots, increasing the density of either species had a positive effect on organic matter consumption (with no significant interspecific interactions) but no effect on nutrient flux. Our results indicate that species-specific effects on ecosystem functioning can be altered by interspecific interactions, which can be either facilitative (positive) or antagonistic (negative) depending on the function considered. The impacts of biodiversity change may therefore not be predictable based solely on the biological traits of the species involved. Possible explanations for why interactions were detected in microcosms but not in the field are discussed.  相似文献   

10.
植物性状研究的机遇与挑战:从器官到群落   总被引:4,自引:0,他引:4  
何念鹏  刘聪聪  张佳慧  徐丽  于贵瑞 《生态学报》2018,38(19):6787-6796
植物性状(Plant trait)或植物功能性状(Plant functional trait)通常是指植物对外界环境长期适应与进化后所表现出的可量度、且与生产力优化或环境适应等密切相关的属性。近几十年来,植物性状研究在性状-生产力、性状-养分、性状间相互关系、性状-群落结构维持等方面取得了卓越成就。然而,由于大多数性状调查都是以植物群落内优势种或亚优势种为对象,使其在探讨群落尺度的性状-功能关系、性状数据如何用于改进或优化模型、性状数据如何与遥感连接等问题时,存在空间尺度和量纲不匹配的极大挑战。为了破解上述难题,亟需发展新的、基于单位土地面积的群落性状(Community trait)概念体系、数据源和计算方法等,推动植物性状数据与快速发展的宏观生态学新技术(遥感、模型和通量观测等)相结合,既拓展了植物性状研究范畴,又可推动其更好地服务于区域生态环境问题的解决。所定义的群落性状(如叶片氮含量、磷含量、比叶面积、气孔密度、叶绿素含量等),是在充分考虑群落内所有物种的性状实测数据,再结合比叶面积、生物量异速生长方程和群落结构数据等,推导而成的基于单位土地面积的群落性状。受测试方法的影响,传统的直接算术平均法或相对生物量加权平均法所获得的群落水平的植物性状(如叶片氮含量g/kg或%),虽然可以有效地探讨群落结构维持机制,由于无法实现对群落性状在量纲上向单位土地面积转换,使它很难与模型和遥感数据相匹配。基于单位土地面积的群落性状,可在空间尺度匹配(或量纲匹配)的前提下实现个体水平测定的植物性状数据与生态模型和遥感观测相联系,更好地探讨区域尺度下自然生态系统结构和功能的关系及其对全球变化的响应与适应。同时,它也可更好地建立群落水平的性状-功能的定量关系(非物种水平),为更好地探讨自然群落结构维持机制和生产力优化机制提供了新思路。  相似文献   

11.
Despite their homogeneous appearance, aquatic systems harbour heterogeneous habitats resulting from nutrient gradients, suspended particulate matter and stratification. Recent reports suggest phylogenetically conserved habitat preferences among bacterioplankton, particularly for particle‐associated (PA) and free‐living (FL) habitats. Here, we show that independent of lake nutrient level and layer, PA and FL abundance‐weighted bacterial community composition (BCC) differed and that inter‐lake BCC varied more for PA than for FL fractions. In low‐nutrient lakes, BCC differences between PA and FL fractions were larger than those between lake layers. The reverse was true for high‐nutrient lakes. Nutrient level affected BCC more in hypolimnia than in epilimnia, likely due to hypolimnetic hypoxia in high‐nutrient lakes. In line with previous reports, we observed within‐phylum operational taxonomic unit (OTU) habitat preference conservation, although not for all phyla, including the phylum with the highest average relative abundance across all habitats (Bacteroidetes). Consistent phylum‐level habitat preferences may indicate that the functional traits that underpin ecological adaptation of freshwater bacteria to lake habitats can be phylogenetically conserved, although the levels of conservation are phylum dependent. Resolving taxa preferences for freshwater habitats sets the stage for identification of traits that underpin habitat specialization and associated functional traits that influence differences in biogeochemical cycling across freshwater lake habitats.  相似文献   

12.
Numerous studies of population genetics in salmonids and other anadromous fishes have revealed that population structure is generally organized into geographic hierarchies (isolation by distance), but significant structure can exist in proximate populations due to varying selective pressures (isolation by adaptation). In Chignik Lakes, Alaska, anadromous Dolly Varden char (Salvelinus malma) spawn in nearly all accessible streams throughout the watershed, including those draining directly to an estuary, Chignik Lagoon, into larger rivers, and into lakes. Collections of Dolly Varden fry from 13 streams throughout the system revealed low levels of population structure among streams emptying into freshwater. However, much stronger genetic differentiation was detected between streams emptying into freshwater and streams flowing directly into estuarine environments. This fine‐scale reproductive isolation without any physical barriers to migration is likely driven by differences in selection pressures across freshwater and estuarine environments. Estuary tributaries had fewer larger, older juveniles, suggesting an alternative life history of smolting and migration to the marine environment at a much smaller size than occurs in the other populations. Therefore, genetic data were consistent with a scenario where isolation by adaptation occurs between populations of Dolly Varden in the study system, and ecological data suggest that this isolation may partially be a result of a novel Dolly Varden life history of seawater tolerance at a smaller size than previously recognized.  相似文献   

13.
T. M. Mata  N. M. Haddad  M. Holyoak 《Oikos》2013,122(1):149-160
Competition for limited resources is considered a key factor controlling invasion success. Resource availability can be viewed in either the long or short‐term. Long‐term availability depends on the baseline nutrient availability in the ecosystem and how those conditions shape the ecological community. Short‐term resource availability fluctuates with disturbances that alter nutrient availability and/or the density and composition of the ecological community. We investigated how species’ traits interact with short and long‐term resource availability to determine the outcome of invasions. We manipulated long‐term baseline resource availability, disturbance intensity, disturbance frequency, and propagule pressure in a fully factorial design using protist microcosms. Our results show that short and long‐term resource availability and the direct mortality from disturbance interact with the traits of resident community members and traits of invaders to determine community invasibility. While competitively dominant invaders with slow growth rates may suffer rather than benefit from short‐term resource fluctuations, quickly growing but competitively inferior invaders can benefit from both the resource fluctuations and the heterogeneity in community composition created by disturbance. Our findings empirically synthesize two explanations for invasion success, namely short‐term resource fluctuations and long‐term resource availability, and highlight the importance of considering traits of invaders and residents, such as growth rate and competitive ability, in the context of productivity and disturbance gradients. This species’ traits approach could resolve idiosyncratic results from natural systems undergoing disturbance and invasion that do not follow patterns predicted by traditional invasion frameworks.  相似文献   

14.
Peter M. Kiffney 《Oikos》2008,117(9):1428-1440
Light, nutrients and predators can constrain primary producers and consumers; however, the ecological effects of these factors have rarely been tested simultaneously in open systems. To partly address this knowledge gap, primary producer biomass and consumer abundance and biomass were quantified on nutrient-diffusing substrata along a light gradient created by four riparian reserve treatments (forested controls, 30-m wide riparian reserve, 10-m reserve, clear-cut) each replicated twice in headwater streams of southwestern British Columbia in 2001 and 2002. Predation pressure, as estimated by trout abundance varied among streams, and was treated as a covariate, with nutrient enrichment and riparian reserve width as fixed effects. Primary producer and consumer biomass were limited by light flux as determined by reserve width, and nutrients, especially phosphorus. In 2002, nutrient effects on algal biomass were conditional upon reserve width: chlorophyll a biomass was higher on P- and N+P-amended pots compared to controls, but only in the 10-m reserve and clear-cut treatments or when light flux was greater than 75 μmol m−2 s−1. The effects of fish predators on primary consumers were also conditional upon reserve width, with strong predator effects occurring in the 10-m and clear-cut riparian treatments. The interactive effects of light flux, nutrient supply and predator abundance in constraining lower trophic levels may be common in nature. My results, therefore, suggest interactive effects were manisfested above a specific threshold condition. The interactive effects of light flux, nutrient supply and predator abundance in constraining lower trophic levels may be common in nature. Results from my study support this hypothesis and suggest that variation in light flux was an important condition dictating the strength of nutrient limitation and redation pressure in these headwater streams.  相似文献   

15.
Biological invasions are a major threat to biodiversity and ecosystem functioning. Forest invasion by alien woody species can have cross-ecosystem effects. This is especially relevant in the case of stream–riparian forest meta-ecosystems as forest streams depend strongly on riparian vegetation for carbon, nutrients and energy. Forest invasion by woody species with dissimilar characteristics from native species may be particularly troublesome. The invasion of temperate deciduous broadleaf forests with low representation of nitrogen (N)-fixing species by N-fixers has the potential to induce ecosystem changes at the stream level. Although effects of tree invasion on stream ecosystems have been under assessed, knowledge of native and invasive tree characteristics allows prediction of invasion effects on streams. Here we present a conceptual model to predict the effects of forest invasion by alien N-fixing species on streams, using as a background the invasion of temperate deciduous broadleaf forests by leguminous Acacia species, which are among the most aggressive invaders worldwide. Effects are discussed using a trait-based approach to allow the model to be applied to other pairs of invaded ecosystem–invasive species, taking into account differences in species traits and environmental conditions. Anticipated effects of N-fixing species invasions include changes in water quality (increase in N concentration) and quantity (decrease in flow) and changes in litter input characteristics (altered diversity, seasonality, typology, quantity and quality). The magnitude of these changes will depend on the magnitude of differences in species traits, the extent and duration of the invasion and stream characteristics (e.g. basal nutrient concentration). The extensive literature on effects of nutrient enrichment of stream water, water scarcity and changes in litter input characteristics on aquatic communities and processes allows prediction of invasion effects on stream structure and function. The magnitude of invasion effects on aquatic communities and processes may, however, depend on interactions among different pathways (e.g. effects mediated by increases in stream nutrient concentration may contrast with those mediated by decreases in water availability or by decreases in litter nutritional quality). A review of the literature addressing effects of increasing cover of N-fixing species on streams suggests a wide application of the model, while it highlights the need to consider differences in the type of system and species when making generalizations. Changes induced by N-fixing species invasion on streams can jeopardize multiple ecosystem services (e.g. good quality water, hydroelectricity, leisure activities), with relevant social and economic consequences.  相似文献   

16.
Intraspecific niche divergence is an important driver of species range, population abundance and impacts on ecosystem functions. Genetic changes are the primary focus when studying intraspecific divergence; however, the role of ecological interactions, particularly host‐microbiome symbioses, is receiving increased attention. The relative importance of these evolutionary and ecological mechanisms has seen only limited evaluation. To address this question, we used Microcystis aeruginosa, the globally distributed cyanobacterium that dominates freshwater harmful algal blooms. These blooms have been increasing in occurrence and intensity worldwide, causing major economic and ecological damages. We evaluated 46 isolates of M. aeruginosa and their microbiomes, collected from 14 lakes in Michigan, USA, that vary over 20‐fold in phosphorus levels, the primary limiting nutrient in freshwater systems. Genomes of M. aeruginosa diverged along this phosphorus gradient in genomic architecture and protein functions. Fitness in low‐phosphorus lakes corresponded with additional shifts within M. aeruginosa including genome‐wide reductions in nitrogen use, an expansion of phosphorus assimilation genes and an alternative life history strategy of nonclonal colony formation. In addition to host shifts, despite culturing in common‐garden conditions, host‐microbiomes diverged along the gradient in taxonomy, but converged in function with evidence of metabolic interdependence between the host and its microbiome. Divergence corresponded with a physiological trade‐off between fitness in low‐phosphorus environments and growth rate in phosphorus‐rich conditions. Co‐occurrence of genotypes adapted to different nutrient environments in phosphorus‐rich lakes may have critical implications for understanding how M. aeruginosa blooms persist after initial nutrient depletion. Ultimately, we demonstrate that the intertwined effects of genome evolution, host life history strategy and ecological interactions between a host and its microbiome correspond with an intraspecific niche shift with important implications for whole ecosystem function.  相似文献   

17.
  1. Animals contribute significantly to nutrient cycling through excretion, but most studies consider their effects under relatively benign abiotic conditions. Disturbances such as drought may alter animals’ nutrient contributions through shifts in species composition and biomass. Headwater streams are particularly vulnerable to extreme climate events and thus might show rapid changes in stream biota and their ecosystem effects.
  2. We tested how biomass and subsequent ecosystem effects (nutrient cycling) of an intermittent prairie stream community changed during a drought. We quantified the biomass and contributions to nutrient cycling for assemblages comprising fishes, crayfish, and tadpoles in 12 isolated pools over 3 months encompassing the harshest drought on record for Kings Creek, KS, U.S.A. We predicted that macroconsumer biomass would decline with pool surface area and that differences in macroconsumer biomass and taxonomic composition would lead to different contributions of pool assemblages to nutrient cycling.
  3. The biomass of pool assemblages declined with decreasing pool size, a pattern apparently driven by mortality, emigration, or metamorphosis. We also observed a change in assemblage structure of drying pools during drought relative to pool size, shifting dominance toward species with more drought-resistant traits. Accordingly, assemblage nitrogen (N) excretion rates declined as pool biomass was reduced, leading to a 58% reduction in N available to epilithic biofilms. Phosphorus (P) excretion rates declined from June to July, but increased in August, as species with high P excretion rates maintained similar proportional biomass and biomass of a non-native fish increased. Molar N:P of pool assemblage excretion declined significantly throughout the drought and coincided with loss of southern redbelly dace (Chrosomus erythrogaster: Cyprinidae).
  4. Animal-mediated nutrient cycling was altered by the loss of biomass and stoichiometric traits of taxa that differed in their occurrences and ability to tolerate abiotic conditions during drought. Elevated availability of dissolved N in isolated pools may increase N uptake rates by biofilms during drought conditions, indicating the importance of N excreted by aggregated macroconsumers, especially those with unique stoichiometric traits. While the significance of shifts in the composition of freshwater communities to ecosystems is not entirely known, additional losses in ecosystem function and changes in community structure may follow episodes of severe drought.
  相似文献   

18.
Evolution of life history traits can occur rapidly and has the potential to influence ecological processes, which can also be shaped by abiotic and biotic factors. Few studies have shown that life history phenotype can affect ecological processes as much as commonly studied biotic ecological variables, but currently we do not know how the ecological effects of life history phenotype compare in size to the effects of abiotic factors, or whether the ecological effects of phenotypes are sensitive to variability in abiotic conditions. Using a factorial mesocosm experiment we compared the ecosystem effects of guppy Poecilia reticulata life history phenotypes in two light treatments representing a four‐fold difference in light levels, which was comparable to upstream downstream differences in light availability in Trinidadian streams. Light and phenotype had significant effects on similar aspects of ecosystem function. Whereas light had a stronger effect on ecosystem structure (algal and invertebrate stocks) than phenotype, phenotype and light had nearly equal effects on many ecosystem processes (nutrient recycling, nutrient fluxes, ecosystem metabolism and leaf litter decomposition). Light had a stronger effect on most guppy life history traits and guppy fitness than differences between phenotypes. The effect of light on these traits was consistent with higher availability of food resources in the high light treatments. Interactions between light and phenotype were weak for the majority of response variables suggesting that abiotic variability did not alter the mechanisms by which phenotypes affect ecosystem function. We conclude that subtle phenotypic differences in consumers can affect ecosystem processes as much as meaningful variability in abiotic factors which until recently were thought to be the primary drivers of ecosystem function in nature. However, despite its effects on traits and the ecosystem, light did not alter the effect of guppy phenotype on ecosystem function.  相似文献   

19.
1. The importance of species diversity for the stability of populations, communities and ecosystem functions is a central question in ecology. 2. Biodiversity experiments have shown that diversity can impact both the average and variability of stocks and rates at these levels of ecological organization in single trophic-level ecosystems. Whether these impacts hold in food webs and across trophic levels is still unclear. 3. We asked whether resource species diversity, community composition and consumer feeding selectivity in planktonic food webs impact the stability of resource or consumer populations, community biomass and ecosystem functions. We also tested the relative importance of resource diversity and community composition. 4. We found that resource diversity negatively affected resource population stability, but had no effect on consumer population stability, regardless of the consumer's feeding selectivity. Resource diversity had positive effects on most ecosystem functions and their stability, including primary production, resource biomass and particulate carbon, nitrogen and phosphorus concentrations. 5. Community composition, however, generally explained more variance in population, community and ecosystem properties than species diversity per se. This result points to the importance of the outcomes of particular species interactions and individual species' effect traits in determining food web properties and stability. 6. Among the stabilizing mechanisms tested, an increase in the average resource community biomass with increasing resource diversity had the greatest positive impact on stability. 7. Our results indicate that resource diversity and composition are generally important for the functioning and stability of whole food webs, but do not have straightforward impacts on consumer populations.  相似文献   

20.
The functional role of burrowing bivalves in freshwater ecosystems   总被引:13,自引:0,他引:13  
1. Freshwater systems are losing biodiversity at a rapid rate, yet we know little about the functional role of most of this biodiversity. The ecosystem roles of freshwater burrowing bivalves have been particularly understudied. Here we summarize what is known about the functional role of burrowing bivalves in the orders Unionoida and Veneroida in lakes and streams globally. 2. Bivalves filter phytoplankton, bacteria and particulate organic matter from the water column. Corbicula and sphaeriids also remove organic matter from the sediment by deposit feeding, as may some unionids. Filtration rate varies with bivalve species and size, temperature, particle size and concentration, and flow regime. 3. Bivalves affect nutrient dynamics in freshwater systems, through excretion as well as biodeposition of faeces and pseudofaeces. Excretion rates are both size and species dependent, are influenced by reproductive stage, and vary greatly with temperature and food availability. 4. Bioturbation of sediments through bivalve movements increases sediment water and oxygen content and releases nutrients from the sediment to the water column. The physical presence of bivalve shells creates habitat for epiphytic and epizoic organisms, and stabilizes sediment and provides refugia for benthic fauna. Biodeposition of faeces and pseudofaeces can alter the composition of benthic communities. 5. There is conflicting evidence concerning the role of resource limitation in structuring bivalve communities. Control by bivalves of primary production is most likely when their biomass is large relative to the water volume and where hydrologic residence time is long. Future studies should consider exactly what bivalves feed upon, whether feeding varies seasonally and with habitat, and whether significant overlap in diet occurs. In particular, we need a clearer picture of the importance of suspension versus deposit feeding and the potential advantages and tradeoffs between these two feeding modes. 6. In North America, native burrowing bivalves (Unionidae) are declining at a catastrophic rate. This significant loss of benthic biomass, coupled with the invasion of an exotic burrowing bivalve (Corbicula), may result in large alterations of ecosystem processes and functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号