首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract: We have used postnatal rat cerebellar astrocyte-enriched cultures to study the excitatory amino acid receptors present on these cells. In the cultures used, type-2 astrocytes (recognized by the monoclonal antibodies A2B5 and LB1) selectively took up γ-[3H]aminobutyric acid ([3H]GABA) and released it when incubated in the presence of micromolar concentrations of kainic and quisqualic acids. The releasing effect of kainic acid was concentration dependent in the range of 5–100 μ M . Quisqualate was more effective than kainate in the lower concentration range but less effective at concentrations at which its releasing activity was maximal (∼50 μ M ). N -Methyl- d -aspartic acid and dihydrokainate (100 μ M ) did not stimulate [3H]GABA release from cultured astrocytes. l -Glutamic acid (20–100 μ M ) stimulated [3H]GABA release as effectively as kainate. The stimulatory effects of kainate and quisqualate on [3H]GABA release were completely Na+ dependent; that of kainate was also partially Ca2+ dependent. Kynurenic acid (50–200 μ M ) selectively antagonized the releasing effects of kainic acid and also that of l -glutamate; quisqualate was unaffected. Quisqualic acid inhibited the releasing effects of kainic acid when both agonists were used at equimolar concentrations (50 μ M ). d -[3H]aspartate was taken up by both type-1 and type-2 astrocytes, but only type-2 astrocytes released it in the presence of kainic acid. Excitatory amino acid receptors with a pharmacology similar to that of the receptors present in type-2 astrocytes were also expressed by the immature, bipotential progenitors of type-2 astrocytes and oligodendrocytes.  相似文献   

2.
Using cerebellar, neuron-enriched primary cultures, we have studied the glutamate receptor subtypes coupled to neurotransmitter amino acid release. Acute exposure of the cultures to micromolar concentrations of kainate and quisqualate stimulated D-[3H]aspartate release, whereas N-methyl-D-aspartate, as well as dihydrokainic acid, were ineffective. The effect of kainic acid was concentration dependent in the concentration range of 20-100 microM. Quisqualic acid was effective at lower concentrations, with maximal releasing activity at about 50 microM. Kainate and dihydrokainate (20-100 microM) inhibited the initial rate of D-[3H]aspartate uptake into cultured granule cells, whereas quisqualate and N-methyl-DL-aspartate were ineffective. D-[3H]Aspartate uptake into confluent cerebellar astrocyte cultures was not affected by kainic acid. The stimulatory effect of kainic acid on D-[3H]aspartate release was Na+ independent, and partly Ca2+ dependent; the effect of quisqualate was Na+ and Ca2+ independent. Kynurenic acid (50-200 microM) and, to a lesser extent, 2,3-cis-piperidine dicarboxylic acid (100-200 microM) antagonized the stimulatory effect of kainate but not that of quisqualate. Kainic and quisqualic acid (20-100 microM) also stimulated gamma-[3H]-aminobutyric acid release from cerebellar cultures, and kynurenic acid antagonized the effect of kainate but not that of quisqualate. In conclusion, kainic acid and quisqualic acid appear to activate two different excitatory amino acid receptor subtypes, both coupled to neurotransmitter amino acid release. Moreover, kainate inhibits D-[3H]aspartate neuronal uptake by interfering with the acidic amino acid high-affinity transport system.  相似文献   

3.
Glutamate (10-100 microM) reversibly depolarizes guinea-pig cerebral cortical synaptosomes. This does not appear to be because of a conventional autoreceptor. Neither kainate at 1 mM, 100 microM N-methyl-D-aspartate (NMDA), 100 microM L-2-amino-4-phosphonobutanoate (APB), nor 100 microM quisqualate affects the Ca2+-dependent release of glutamate from suboptimally depolarized synaptosomes. However, kainate, quisqualate, and the quisqualate agonists beta-N-oxalylamino-L-alanine and alpha-amino-3-hydroxy-5-methylisoxazole propionate cause a slow Ca2+-independent release of glutamate from polarized synaptosomes. However, unlike kainate, quisqualate does not inhibit the acidic amino acid carrier. APB, NMDA, and the NMDA receptor-mediated neurotoxin beta-N-methylamino-L-alanine do not influence Ca2+-independent release at 100 microM. The depolarization of the plasma membrane by glutamate can be mimicked by D-aspartate, can be blocked by the transport inhibitor dihydrokainate, and is accompanied by the net uptake of acidic amino acids. L-Glutamate or D-aspartate at 100 microM increases the cytoplasmic free Ca2+ concentration. D-aspartate at 100 microM causes a Ca2+-dependent release of endogenous glutamate, superimposed on the Ca2+-independent heteroexchange with glutamate through the acidic amino acid carrier. The results suggest that the glutamatergic subpopulation of synaptosomes can be depolarized by exogenous glutamate.  相似文献   

4.
Acute excitotoxicity in embryonic chick retina and the ability of Cl- channel blockers to prevent toxicity were evaluated by measurement of endogenous amino acid release and histology. Treatment of retina with kainate, quisqualate, or N-methyl-D-aspartate resulted in a large dose-dependent release of gamma-aminobutyric acid and taurine, moderate release of glutamine and alanine, and no measurable release of glutamate or aspartate. Concentrations inducing maximal gamma-aminobutyric acid release were 50 microM quisquaalate, 100 microM kainate, and 100 microM N-methyl-D-aspartate. Treatment with 1 mM glutamate resulted in significant gamma-aminobutyric acid release, as well as an elevation in medium aspartate levels. Typical excitotoxic retinal lesions were produced by the agonists and, at the lower concentrations tested, revealed a regional sensitivity. There was a positive correlation between the amount of gamma-aminobutyric acid release and the extent of tissue swelling, suggesting that release may be secondary to toxic cellular events. Omission of Cl- completely blocked cytotoxic effects due to kainate or glutamate. Likewise, addition of the Cl-/bicarbonate anion channel blocker 4,4'-diisothiocyanatostilbene-2,2'-disulfonate at 600 microM protected retina from cytotoxic damage from all excitotoxic analogs and restored amino acid levels to baseline values. Furosemide, which blocks Na+/K+/2Cl- cotransport, was only minimally effective in reducing amino acid release induced by the agonists. Consistent with the latter, histological examination showed the continued presence of the lesion but with general reduction of cellular edema. These results indicate that although influx of Cl- is a central component of the acute excitotoxic phenomenon, mechanisms other than passive Cl- flux may be involved.  相似文献   

5.
The effects of the excitatory amino acid analogs kainate (KA) and N-methyl- -aspartate (NMDA) on release of amino acids from astrocytes in primary culture were investigated. Under basal conditions, glutamine was present in the medium at 15 μM. The levels of serine and taurine were 1.5 and 2.0 μM, respectively, while the concentration of other amino acids was below 1 μM. At 10 μM, KA did not affect amino acid release, whereas 100 μM KA enhanced glutamine release by 34% and taurine release by 85%. At 1 mM, KA stimulated the release of all amino acids measured. However, while most amino acids increased by 50–150%, glutamate and aspartate were elevated by more than 3000%. The effect of KA was greatly reduced by 1 mM kynurenate, an excitatory amino acid receptor antagonist. 1 mM NMDA did not stimulate amino acid release from the cultures. The results indicate that astrocytes are endowed with KA-receptive sites, but they do not seem to possess NMDA receptors.  相似文献   

6.
Amino acid release studies were performed by an HPLC procedure using differentiated rat cerebellar granule cell cultures. Kainic acid (KA; 50 microM) caused an increase (about threefold) in the release of endogenous glutamate and a lesser, but statistically significant, increase in the release of glutamine, glycine, threonine, taurine, and alanine. Quisqualic acid (QA) and, to a lesser degree, alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) (both 50 microM) enhanced the release of the following amino acids in the order glutamate greater than aspartate greater than or equal to taurine, whereas the release of other amino acids was either unaffected or affected in a statistically nonsignificant way. The release of glutamate induced by KA was partially (43%) Ca2+ dependent. The other release-inducing effects of KA and QA were not Ca2+ dependent. In all cases, the evoked release could be prevented by the non-N-methyl-D-aspartate (non-NMDA) receptor antagonist 6-cyano-2,3-hydroxy-7-nitroquinoxaline, and thus appeared to be receptor mediated. NMDA (5 and 50 microM) had no release-inducing activity. The KA-, QA-, and AMPA-evoked release of newly synthesized [3H]glutamate and [3H]aspartate (formed in the cells exposed to [3H]glutamine) was very similar to the evoked release of endogenous glutamate and aspartate. On the other hand, the release of preloaded D-[3H]aspartate (purified by HPLC in the various fractions analyzed, before radioactivity determination) induced by 50 microM KA was twice as high as that of endogenous glutamate. In the case of high [K+] depolarization, in contrast, the release of preloaded D-[3H]aspartate was approximately 30% lower than that of endogenous glutamate.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
L-Glutamate, N-methyl-D-aspartic acid (NMDA), quisqualate, and kainate were found to increase endogenous somatostatin release from primary cultures of rat cortical neurons in a dose-dependent manner. The rank order of potency calculated from the dose-response curves was quisqualate greater than glutamate = NMDA greater than kainate, with EC50 values of 0.4, 20, and 40 microM, respectively. Alanine, glutamine, and glycine did not modify the release of somatostatin. The stimulation of somatostatin release elicited by L-glutamate was Ca2+ dependent, was decreased by Mg2+, and was blocked by DL-amino-5-phosphonovaleric acid (APV) and thienylphencyclidine (TCP), two specific antagonists of NMDA receptors. The NMDA stimulatory effect was strongly inhibited by APV in a competitive manner (IC50 = 50 microM) and by TCP in a noncompetitive manner (IC50 = 90 nM). The release of somatostatin induced by the excitatory amino acid agonists was not blocked by tetrodotoxin (1 microM), a result suggesting that tetrodotoxin-sensitive, sodium-dependent action potentials are not involved in the effect. Somatostatin release in response to NMDA was potentiated by glycine, but the inhibitory strychnine-sensitive glycine receptor did not appear to be involved. Our data suggest that glutamate exerts its stimulatory action on somatostatin release essentially through an NMDA receptor subtype.  相似文献   

8.
The effects of methylmercury on the spontaneous and potassium-evoked release of endogenous amino acids from mouse cerebellar slices have been examined. Methylmercury induced a concentration-dependent increase in the spontaneous release of glutamate, aspartate, gamma-aminobutyric acid, and taurine from mouse cerebellar slices. Glycine release was slightly increased, but not in a concentration-dependent manner. The spontaneous release of glutamine from mouse cerebellar slices was not altered by any concentration of methylmercury examined (10, 20, and 50 microM). The tissue content of glutamate, gamma-aminobutyric acid, glutamine, and taurine decreased after exposure to methylmercury. Exposure of cerebellar slices to 20 microM methylmercury resulted in a significant enhancement in glutamate release during stimulation with 35 mM K+. This increase could be accounted for by the methylmercury-induced increase in spontaneous glutamate release. The increase in spontaneous release of glutamate and gamma-aminobutyric acid was independent of the availability of extracellular calcium. These results suggest that methylmercury increases the release of neurotransmitter amino acids, particularly gamma-aminobutyric acid and glutamate, by acting at intracellular sites to increase release from a neurotransmitter pool. The increase in the potassium-stimulated release of glutamate may reflect an increased sensitivity of the cerebellar granule cell to the effects of methylmercury. It is suggested that alterations in amino acid neurotransmitter function in the cerebellum may contribute to some of the neurological symptoms of methylmercury intoxication.  相似文献   

9.
Slices of hippocampal area CA1 were employed to test the hypothesis that the release of glutamate and aspartate is regulated by the activation of excitatory amino acid autoreceptors. In the absence of added Mg2+, N-methyl-D-aspartate (NMDA)-receptor antagonists depressed the release of glutamate, aspartate, and gamma-aminobutyrate evoked by 50 mM K+. Conversely, the agonist NMDA selectively enhanced the release of aspartate. The latter action was observed, however, only when the K+ stimulus was reduced to 30 mM. Actions of the competitive antagonists 3-[(+/- )-2-carboxypiperazin-4-yl]-propyl-l-phosphonic acid (CPP) and D-2-amino-5-phosphonovalerate (D-AP5) differed, in that the addition of either 1.2 mM Mg2+ or 0.1 microM tetrodotoxin to the superfusion medium abolished the depressant effect of CPP without diminishing the effect of D-AP5. These results suggest that the activation of NMDA receptors by endogenous glutamate and aspartate enhances the subsequent release of these amino acids. The cellular mechanism may involve Ca2+ influx through presynaptic NMDA receptor channels or liberation of a diffusible neuromodulator linked to the activation of postsynaptic NMDA receptors. (RS)-alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid, a selective quisqualate receptor agonist, and kainate, an agonist active at both kainate and quisqualate receptors, selectively depressed the K(+)-evoked release of aspartate. Conversely, 6-cyano-7-nitro-quinoxaline-2,3-dione, an antagonist active at both quisqualate and kainate receptors, selectively enhanced aspartate release. These results suggest that glutamate can negatively modulate the release of aspartate by activating autoreceptors of the quisqualate, and possibly also of the kainate, type. Thus, the activation of excitatory amino acid receptors has both presynaptic and postsynaptic effects.  相似文献   

10.
The properties of l-[3H]glutamate release with an emphasis on the modulation by inhibitory amino acids of the potassium-induced release were studied with cerebellar granule cells from 7-day-old rats cultured for 7 or 14 days. Spontaneous glutamate release from cells grown for 7 days was fast, being slightly enchanced in Na+-free medium. l-Glutamate, kainate and quisqualate stimulated the release whereas N-methyl-d-aspartate and taurine were without any effect. The potassium-evoked glutamate release was Ca2+-dependent and potentiated by l-glutamate and quisqualate. Stimulated release was strongly depressed by glutamatediethylester. This inhibition was antagonized by GABA but not by taurine. GABA and its structural analogues taurine, hypotaurine, β-alanine and glycine were all equally effective in depressing stimulated glutamate release. The inhibition by GABA could be blocked by GABA antagonist. Both K+-evoked release and the kainate-induced release of glutamate were significantly greater in 14-day-old than in 7-day-old cultures, but the other properties of release were similar. The demonstration of calcium-dependent and potassium-stimulated glutamate release from cerebellar granule cells is consonant with the proposed neurotransmitter role of glutamate in these cells. The release could be modulated by both glutamatergic substances and inhibitory amino acids, the effect of GABA probably being mediated by GABAergic receptors.  相似文献   

11.
O-2A progenitor cells are bipotential glial precursors that give rise to both oligodendrocytes and type-2 astrocytes on a precise schedule in the rat CNS. Studies in culture suggest that oligodendrocyte differentiation occurs constitutively, while type-2 astrocyte differentiation requires an exogenous inducer such as fetal calf serum. Here we describe a rat brain cell culture system in which type-2 astrocytes develop on schedule in the absence of exogenous inducers. Coincident with type-2-astrocyte development, the cultures produce an approximately 20 kd type-2-astrocyte-inducing factor(s). Purified cultures of type-1 astrocytes can produce a similar factor(s). Under conditions where they produce type-2-astrocyte-inducing factor(s), both brain and type-1 astrocyte cultures produce a factor(s) with ciliary neurotrophic (CNTF)-like activity. Purified CNTF, like the inducers from brain and type-1 astrocyte cultures, prematurely induces type-2 astrocyte differentiation in brain cultures. These findings suggest that type-2 astrocyte development is initiated by a CNTF-like protein produced by type-1 astrocytes.  相似文献   

12.
Abstract: Exposure of primary astrocyte cultures to isosmo-tic ethanol from 10-100 mA/ led to both swelling of the cells and release of [3H]taurine and r[3H]aspartate. Exposure to hyperosmotic ethanol, in the same concentration range. caused neither swelling nor release. Release was inhibited by the anion transport blocker L-644,711, already shown to inhibit amino acid release evoked by hyposmotic or high-potassium medium, conditions that also cause astrocytic swelling. Ethanol-induced release generally showed a decline in response to successive exposures to ethanol, and release was not dependent on extracellular calcium. Thus, the characteristics of swelling-induced release of amino acids by isosmotic ethanol seem to correspond to those of swelling-induced release from astrocytes due to exposure to hypotonic or high-K+ media. We discuss whether such effects may contribute to CNS damage after head injury and stroke.  相似文献   

13.
Activation of kainate receptors causes Co2+ influx into neurons, type-2 astrocytes, and O-2A progenitor cells. Agonist-activated Co2+ uptake can be performed using cultured cells or fresh tissue slices. Based on the pattern of response to kainate, glutamate, and quisqualate, three functionally different kainate-activated ion channels (K1, K2, and K3) can be discriminated. Co2+ uptake through the K1 receptor was only activated by kainate. Both kainate and glutamate activated Co2+ uptake through the K2 receptor. Co2+ uptake through the K3 receptor was activated by all three ligands: kainate, glutamate, and quisqualate. Co2+ uptake occurred through a nonselective cation entry pathway permeable to Co2+, Ca2+, and Mn2+. The agonist-dependent activation of divalent cation influx through different kainate receptors could be correlated with expression of certain kainate receptor subunit combinations. These results are indicative of kainate receptors that may contribute to excitatory amino acid-mediated neurotoxicity.  相似文献   

14.
The effect of ammonia on glutamate accumulation and metabolism was examined in astrocyte cultures prepared from neonatal rat cortices. Intact astrocytes were incubated with 70 microM L-[14C(U)]glutamate and varying amounts of ammonium chloride. The media and cells were analyzed separately by HPLC for amino acids and labelled metabolites. Extracellular glutamate was reduced to 8 microM by 60 min. Removal of glutamate from the extracellular space was not altered by addition of ammonia. The rate of glutamine synthesis was increased from 3.6 to 9.3 nmol/mg of protein/min by addition of 100 microM ammonia, and intracellular glutamate was reduced from 262 to 86 nmol/mg of protein after 30 min. The metabolism of accumulated glutamate was matched nearly perfectly by the synthesis of glutamine, and both processes were proportional to the amount of added ammonia. The transamination and deamination products of glutamate were minor metabolites that either decreased or remained unchanged with increasing ammonia. Thus, ammonia addition stimulates the conversion of glutamate to glutamine in intact astrocyte cultures. At physiological concentrations of ammonia, glutamine synthesis appears to be limited by the rate of glutamate accumulation and the activity of competing reactions and not by the activity of glutamine synthetase.  相似文献   

15.
By means of the push-pull cannula method, the outflow of endogenous amino acids was studied in the striatum of halothane-anesthetized rats. Addition of K+ ions (30 mM for 4 min) to the superfusion fluid increased the release of aspartate (+116%), glutamate (+217%), taurine (+109%), and gamma-aminobutyric acid (GABA) (+429%) whereas a prolonged decrease in the outflow of glutamine (-28%) and a delayed reduction in the efflux of tyrosine (-25%) were observed. In the absence of Ca2+, the K+-induced release of aspartate, glutamate, and GABA was blocked whereas the K+-induced release of taurine was still present. Under these conditions, the decrease in glutamine efflux was reduced and that of tyrosine was abolished. Local application of tetrodotoxin (5 microM) decreased only the outflow of glutamate (-25%). One week following lesion of the ipsilateral sensorimotor cortex the spontaneous outflow of glutamine and of tyrosine was enhanced. Despite the lack of change in their spontaneous outflow, the K+-evoked release of aspartate and glutamate was less pronounced in lesioned than in control animals, whereas the K+-evoked changes in GABA and glutamine efflux were not modified. Our data indicate that the push-pull cannula method is a reliable approach for the study of the in vivo release of endogenous amino acids. In addition, they provide further evidence for a role for glutamate and aspartate as neurotransmitters of corticostriatal neurons.  相似文献   

16.
In most other studies the release of amino acid neurotransmitters and modulators in vitro has been studied mostly using labeled preloaded compounds. For several reasons the estimated release may not reliably reflect the release of endogenous compounds. The magnitudes of the release cannot thus be quite correctly estimated using radioactive labels. The basal and K+-evoked release of the neuroactive endogenous amino acids γ-aminobutyrate (GABA), glycine, taurine, glutamate and aspartate was now studied in slices from the striatum from 7-day-old to 3-month-old mice under control (normoxic) and ischemic conditions. The release of alanine, threonine and serine was assessed as control. GABA and glutamate release was much greater in 3-month-old than in 7-day-old mice, whereas with taurine the situation was the opposite. Ischemia markedly enhanced the release of all these three amino acids. The release of aspartate and glycine was markedly enhanced as well whereas no effects were discernible in the release of glutamine, alanine, serine and threonine. K+ stimulation (50 mM) enhanced the release of GABA, glutamate, taurine, aspartate and glycine in most cases, except with taurine in 3-month-old mice under the ischemic conditions and with aspartate in 7-day-old mice under the control conditions. K+ stimulation did not affect the release of glutamine, alanine, serine or threonine. The results on endogenous amino acids are qualitatively similar to those obtained in our earlier experiments with labeled preloaded amino acids. In conclusion, in developing mice only inhibitory taurine is released in such amounts that may counteract the harmful effects of excitatory amino acids in ischemia.  相似文献   

17.
Primary rat cerebral astrocyte cultures were grown for 2 weeks in isoosmotic medium (305 mosmol) and then placed in similar medium with a reduced NaCl concentration. During the first hour of growth in this moderately hypoosmotic medium (240 mosmol), the cells lose 88% of their taurine contents, 62% of their alanine contents, and 54% of their aspartate contents while regaining normal volume. Loss of these amino acids accounts for 43% of observed volume regulation. Contents of these amino acids remain decreased during 24 h of growth in hypoosmotic medium. In contrast, potassium, glutamate, glutamine, and asparagine contents are not changed, relative to cells in isoosmotic medium, at time points between 1 h and 24 h of hypoosmotic exposure. The data suggest astrocytes contribute to net loss of amino acids, but not potassium, from brains exposed to hypoosmotic conditions in situ.  相似文献   

18.
Rapid swelling of astrocytes in primary culture by exposure to hyposmotic medium (or slower swelling by exposure to high K+ medium) leads to release of the excitatory amino acids (EAAs) glutamate and aspartate. One question that arises is whether these phenomena are only relevant to pathological states such as ischemia and trauma where marked astrocytic swelling occurs or whether much smaller astrocytic volume changes, that might be encountered under physiological states, will cause such release. We have recently found that extracellular ATP strongly potentiated volume-regulated anion channels (VRACs)-mediated-excitatory amino acid release in non-swollen and osmotically swollen primary astrocyte cultures. However, ATP does not seem to directly activate but instead positively modulates VRACs and we postulate that a minor fraction of these are active under isoosmotic conditions based on the finding that in hyperosmotic media the ATP-induced increase was inhibited. Agonist and inhibitor analysis suggests that the effect of ATP is mediated by several subtypes of metabotropic P2Y receptors. Thus, the concept of volume transmission may be extended to volume-mediated transmission, whereby moderate cell swelling causes release of neurotransmitter substances. The product of the superoxide oxygen radical and nitric oxide, peroxynitrite, formed under pathological conditions such as cerebral ischemia, also potentiated the release of D-[3H]aspartate from astrocyte cultures exposed to limited or marked swelling via intracellular signaling mechanisms involving tyrosine kinases (TKs). Thus, the enhancement of cell volume-dependent release of excitatory amino acids from astrocytes can be physiological or pathological and its magnitude depends on the degree of the cell volume increase.  相似文献   

19.
Abstract: Bradykinin- and substance P (SP)-stimulated second messenger studies in isolated subsets of neuroglia showed bradykinin-stimulated synthesis of phospho- inositides (PI) in type-1 astrocytes and oligodendrocytes. SP-stimulated PI accumulation was restricted to oligoden- drocyte/type-2 astrocyte progenitor cells and type-2 astrocytes. These data were confirmed by analysis of calcium transients in single cells. In a regional study, SP-stimulated PI accumulation in primary astrocyte cultures was restricted to white matter. We conclude that regional heterogeneity in the expression of peptide receptors in cultures of primary astrocytes arises from a restricted distribution on subsets of macroglia. SP receptors restricted on cells of the oligodendrocyte/type-2 astrocyte type-2 lineage in vitro, coupled with in vivo observations by others, suggests that SP receptor expression is conserved on subsets of macroglia in vitro and possibly reactive astrocytes in vivo.  相似文献   

20.
The effects of chronic administration of 2-guanidinoethane sulfonic acid on the levels of intra- and extracellular amino acids in the rat hippocampus were studied. The tissue content of taurine was selectively reduced by almost one third after 9 days of peroral administration of 1% 2-guanidinoethane sulfonate. Extracellular levels of amino acids were monitored with the brain microdialysis method. The taurine concentration in the extracellular fluid was depressed in relation to the decrease in intracellular taurine. Unexpectedly, extracellular (but not intracellular) glutamate was doubled in 2-guanidinoethane sulfonate treated animals. The kainic acid evoked release of taurine was suppressed in the 2-guanidinoethane sulfonate group, whereas the kainate stimulated efflux of glutamate was elevated after 2-guanidinoethane sulfonate administration. The acute metabolic effects of kainate were studied by measuring the efflux of the adenosine triphosphate breakdown products hypoxanthine, xanthine, inosine and adenosine. No differences were found between control and 2-guanidinoethane sulfonate treated rats with respect to basal or kainic acid evoked release of purine catabolites. Also, the neuronal loss caused by kainate injection into the hippocampus was not modified by 2-guanidinoethane sulfonate treatment, suggesting that endogenous taurine does not affect these responses. We conclude that chronic administration of 2-guanidinoethane sulfonate does not sensitize central neurons to the metabolic and toxic actions of kainate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号