首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
For many types of cells, an increase in cell density leads to characteristic changes in intracellular signalling and cell function. It is unknown, however, whether cell density affects the function of T lymphocytes. It is presented here that aggregation of Jurkat T cells, murine thymocytes or human peripheral blood T cells, results in gradual modification of the Lck tyrosine kinase. Within one hour of aggregation, Lck in the detergent-insoluble lipid raft fraction is dephosphorylated mainly at the carboxy-terminal tyrosine. Further aggregation leads to gradual loss of Lck protein from both lipid raft and non-raft fractions which is accompanied by increased protein ubiquitination, a process that is more evident in the detergent-soluble fraction. In contrast, the expression of LAT, which like Lck distributes to raft and non-raft membrane, or Csk, a kinase with a structure similar to Lck, is not affected by cell aggregation. Dephosphorylation of lipid raft-associated Lck, albeit with reduced kinetics, is observed in aggregated Jurkat CD45-deficient cells as well, suggesting involvement of additional tyrosine phosphatases. Changes in Lck structure and expression correlate with reduced ability of aggregated cells to fully activate protein tyrosine phosphorylation after stimulation of the TCR, and with changes in the activation of down-stream signalling cascades.  相似文献   

2.
The Src family tyrosine kinase Lck is essential for T cell development and T cell receptor (TCR) signaling. Lck is post-translationally fatty acylated at its N-terminus conferring membrane targeting and concentration in plasma membrane lipid rafts, which are lipid-based organisational platforms. Confocal fluorescence microscopy shows that Lck colocalizes in rafts with GPI-linked proteins, the adaptor protein LAT and Ras, but not with non-raft membrane proteins including the protein tyrosine phosphatase CD45. The TCR also associates with lipid rafts and its cross-linking causes coaggregation of raft-associated proteins including Lck, but not of CD45. Cross-linking of either the TCR or rafts strongly induces specific tyrosine phosphorylation of the TCR in the rafts. Remarkably, raft patching alone induces signalling events analogous to TCR stimulation, with the same dependence on expression of key TCR signalling molecules. Our results indicate a mechanism whereby TCR engagement promotes aggregation of lipid rafts, which facilitates colocalization of signaling proteins including Lck, LAT, and the TCR, while excluding CD45, thereby potentiating protein tyrosine phosphorylation and downstream signaling. We are currently testing this hypothesis as well as using imaging techniques such as fluorescence resonance energy transfer (FRET) microscopy to study the dynamics of proteins and lipids in lipid rafts in living cells undergoing signaling events. Recent data show that the key phosphoinositide PI(4,5)P2 is concentrated in T cell lipid rafts and that on stimulation of the cells it is rapidly converted to PI(3,4,5)P3 and diacylglycerol within rafts. Thus rafts are hotspots for both protein and lipid signalling pathways.  相似文献   

3.
Acute cholesterol depletion is generally associated with decreased or abolished T cell signalling but it can also cause T cell activation. This anomaly has been addressed in Jurkat T cells using progressive cholesterol depletion with methyl-beta-cyclodextrin (MBCD). At depletion levels higher than 50% there is substantial cell death, which explains reports of signalling inhibition. At 10–20% depletion levels, tyrosine phosphorylation is increased, ERK is activated and there is a small increase in cytoplasmic Ca2+. Peripheral actin polymerisation is also triggered by limited cholesterol depletion. Strikingly, the lipid raft marker GM1 aggregates upon cholesterol depletion and these aggregated domains concentrate the signalling proteins Lck and LAT, whereas the opposite is true for the non lipid raft marker the transferrin receptor. Using PP2, an inhibitor of Src family kinase activation, it is demonstrated that the lipid raft aggregation occurs independently of and thus upstream of the signalling response. Upon cholesterol depletion there is an increase in overall plasma membrane order, indicative of more ordered domains forming at the expense of disordered domains. That cholesterol depletion and not unspecific effects of MBCD was behind the reported results was confirmed by performing all experiments with MBCD–cholesterol, when no net cholesterol extraction took place. We conclude that non-lethal cholesterol depletion causes the aggregation of lipid rafts which then induces T cell signalling.  相似文献   

4.
Activation of T cell antigen receptor (TCR) induces tyrosine phosphorylations that mediate the assembly of signaling protein complexes. Moreover, cholesterol-sphingolipid raft membrane domains have been implicated to play a role in TCR signal transduction. Here, we studied the assembly of TCR with signal transduction proteins and raft markers in plasma membrane subdomains of Jurkat T leukemic cells. We employed a novel method to immunoisolate plasma membrane subfragments that were highly concentrated in activated TCR-CD3 complexes and associated signaling proteins. We found that the raft transmembrane protein linker for activation of T cells (LAT), but not a palmitoylation-deficient non-raft LAT mutant, strongly accumulated in TCR-enriched immunoisolates in a tyrosine phosphorylation-dependent manner. In contrast, other raft-associated molecules, including protein tyrosine kinases Lck and Fyn, GM1, and cholesterol, were not highly concentrated in TCR-enriched plasma membrane immunoisolates. Many downstream signaling proteins coisolated with the TCR/LAT-enriched plasma membrane fragments, suggesting that LAT/TCR assemblies form a structural scaffold for TCR signal transduction proteins. Our results indicate that TCR signaling assemblies in plasma membrane subdomains, rather than generally concentrating raft-associated membrane proteins and lipids, form by a selective protein-mediated anchoring of the raft membrane protein LAT in vicinity of TCR.  相似文献   

5.
Lateral assemblies of glycolipids and cholesterol, “rafts,” have been implicated to play a role in cellular processes like membrane sorting, signal transduction, and cell adhesion. We studied the structure of raft domains in the plasma membrane of non-polarized cells. Overexpressed plasma membrane markers were evenly distributed in the plasma membrane. We compared the patching behavior of pairs of raft markers (defined by insolubility in Triton X-100) with pairs of raft/non-raft markers. For this purpose we cross-linked glycosyl-phosphatidylinositol (GPI)-anchored proteins placental alkaline phosphatase (PLAP), Thy-1, influenza virus hemagglutinin (HA), and the raft lipid ganglioside GM1 using antibodies and/or cholera toxin. The patches of these raft markers overlapped extensively in BHK cells as well as in Jurkat T–lymphoma cells. Importantly, patches of GPI-anchored PLAP accumulated src-like protein tyrosine kinase fyn, which is thought to be anchored in the cytoplasmic leaflet of raft domains. In contrast patched raft components and patches of transferrin receptor as a non-raft marker were sharply separated. Taken together, our data strongly suggest that coalescence of cross-linked raft elements is mediated by their common lipid environments, whereas separation of raft and non-raft patches is caused by the immiscibility of different lipid phases. This view is supported by the finding that cholesterol depletion abrogated segregation. Our results are consistent with the view that raft domains in the plasma membrane of non-polarized cells are normally small and highly dispersed but that raft size can be modulated by oligomerization of raft components.  相似文献   

6.
The molecular events and the protein components that are involved in signalling by the T cell receptor (TCR) for antigen have been extensively studied. Activation of signalling cascades following TCR stimulation depends on the phosphorylation of the receptor by the tyrosine kinase Lck, which localizes to the cytoplasmic face of the plasma membrane by virtue of its post-translational modification. However, the precise order of events during TCR phosphorylation at the plasma membrane, remains to be defined. A current theory that describes early signalling events incorporates the function of lipid rafts, microdomains at the plasma membrane with distinct lipid and protein composition. Lipid rafts have been implicated in diverse biological functions in mammalian cells. In T cells, molecules with a key role in TCR signalling, including Lck, localize to these domains. Importantly, mutant versions of these proteins which fail to localise to raft domains were unable to support signalling by the TCR. Biochemical studies using purified detergent-resistant membranes (DRM) and confocal microscopy have suggested that upon stimulation, the TCR and Lck-containing lipid rafts may come into proximity allowing phosphorylation of the receptor. Further, there are data suggesting that phosphorylation of the TCR could depend on a transient increase in Lck activity that takes place within lipid rafts to initiate signalling. Current results and a model of how lipid rafts may regulate TCR signalling are discussed.  相似文献   

7.
Lck is a non-receptor tyrosine kinase of the Src family that is essential for T cell activation. Dual N-terminal acylation of Lck with myristate (N-acylation) and palmitate (S-acylation) is essential for its membrane association and function. Reversible S-acylation of Lck is observed in vivo and may function as a control mechanism. Here we identify the DHHC family protein S-acyltransferase DHHC2 as an enzyme capable of palmitoylating of Lck in T cells. Reducing the DHHC2 level in Jurkat T cells using siRNA causes decreased Lck S-acylation and partial dislocation from membranes, and conversely overexpression of DHHC2 increases S-acylation of an Lck surrogate, LckN10-GFP. DHHC2 localizes primarily to the endoplasmic reticulum and Golgi apparatus suggesting that it is involved in S-acylation of newly-synthesized or recycling Lck involved in T cell signalling.  相似文献   

8.
The TNF-related apoptosis-inducing ligand was shown to provide a costimulatory signal that cooperates with the TCR/CD3 complex to induce T cell proliferation and cytokine production. Although a number of signaling pathways were linked to the TCR/CD3 complex, it is not known how these two receptors cooperate to induce T cell activation. In this study, we show that TRAIL-induced costimulation of T cells depends on activation of the NF-κB pathway. TRAIL induced the NF-κB pathway by phosphorylation of inhibitor of κB factor kinase and protein kinase C in conjunction with anti-CD3. Furthermore, we demonstrated that TRAIL costimulation induced phosphorylation of the upstream TCR-proximal tyrosine kinases, Lck and ZAP70. Ligation of the TRAIL by its soluble receptor, DR4-Fc, alone was able to induce the phosphorylation of Lck and ZAP70 and to activate the NF-κB pathway; however, it was insufficient to fully activate T cells to support T cell proliferation. In contrast, TRAIL engagement in conjunction with anti-CD3, but not TRAIL ligation alone, induced lipid raft assembly and recruitment of Lck and PKC. These results demonstrate that TRAIL costimulation mediates NF-κB activation and T cell proliferation by lipid raft assembly and recruitment of Lck. Our results suggest that in TRAIL costimulation, lipid raft recruitment of Lck integrates mitogenic NF-κB-dependent signals from the TCR and TRAIL in T lymphocytes.  相似文献   

9.
In T lymphocytes, lipid rafts are preferred sites for signal transduction initiation and amplification. Many cell membrane receptors, such as the TCR, coreceptors, and accessory molecules associate within these microdomains upon cell activation. However, it is still unclear in most cases whether these receptors interact with rafts through lipid-based amino acid modifications or whether raft insertion is driven by protein-protein interactions. In murine T cells, a significant fraction of CD2 associates with membrane lipid rafts. We have addressed the mechanisms that control the localization of rat CD2 at the plasma membrane, and its redistribution within lipid rafts induced upon activation. Following incubation of rat CD2-expressing cells with radioactive-labeled palmitic acid, or using CD2 mutants with Cys226 and Cys228 replaced by alanine residues, we found no evidence that rat CD2 was subjected to lipid modifications that could favor the translocation to lipid rafts, discarding palmitoylation as the principal mechanism for raft addressing. In contrast, using Jurkat cells expressing different CD2 and Lck mutants, we show that the association of CD2 with the rafts fully correlates with CD2 capacity to bind to Lck. As CD2 physically interacts with both Lck and Fyn, preferentially inside lipid rafts, and reflecting the increase of CD2 in lipid rafts following activation, CD2 can mediate the interaction between the two kinases and the consequent boost in kinase activity in lipid rafts.  相似文献   

10.
Cross-linking of 4-1BB, a member of the TNFR family, increased tyrosine phosphorylation of TCR-signaling molecules such as CD3epsilon, CD3zeta, Lck, the linker for activation of T cells, and SH2 domain-containing leukocyte phosphoprotein of 76 kDa (SLP-76). In addition, incubation of activated CD8+ T cells with p815 cells expressing 4-1BBL led to redistribution of the lipid raft domains and Lck, protein kinase C-theta;, SLP-76, and phospholipase C-gamma1 (PLC-gamma1) on the T cell membranes to the areas of contact with the p815 cells and recruitment of 4-1BB, TNFR-associated factor 2, and phospho-tyrosine proteins to the raft domains. 4-1BB ligation also caused translocation of TNFR-associated factor 2, protein kinase C-theta;, PLC-gamma1, and SLP-76 to detergent-insoluble compartments in the CD8+ T cells, and cross-linking of 4-1BB increased intracellular Ca2+ levels apparently by activating PLC-gamma1. The redistribution of lipid rafts and Lck, as well as translocation of PLC-gamma1, and degradation of IkappaB-alpha in response to 4-1BB were inhibited by disrupting the formation of lipid rafts with methyl-beta-cyclodextrin. These findings demonstrate that 4-1BB is a T cell costimulatory receptor that activates TCR-signaling pathways in CD8+ T cells.  相似文献   

11.
《Molecular membrane biology》2013,30(7-8):473-486
Abstract

Lck is a non-receptor tyrosine kinase of the Src family that is essential for T cell activation. Dual N-terminal acylation of Lck with myristate (N-acylation) and palmitate (S-acylation) is essential for its membrane association and function. Reversible S-acylation of Lck is observed in vivo and may function as a control mechanism. Here we identify the DHHC family protein S-acyltransferase DHHC2 as an enzyme capable of palmitoylating of Lck in T cells. Reducing the DHHC2 level in Jurkat T cells using siRNA causes decreased Lck S-acylation and partial dislocation from membranes, and conversely overexpression of DHHC2 increases S-acylation of an Lck surrogate, LckN10-GFP. DHHC2 localizes primarily to the endoplasmic reticulum and Golgi apparatus suggesting that it is involved in S-acylation of newly-synthesized or recycling Lck involved in T cell signalling.  相似文献   

12.
By mutagenesis, we demonstrated that the palmitoylation of the membrane-proximal Cys(396) and Cys(399)of CD4, and the association of CD4 with Lck contribute to the enrichment of CD4 in lipid rafts. Ab cross-linking of CD4 induces an extensive membrane patching on the T cell surface, which is related to lipid raft aggregation. The lipid raft localization of CD4 is critical for CD4 to induce the aggregation of lipid rafts. The localization of CD4 in lipid rafts also correlates to the ability of CD4 to enhance receptor tyrosine phosphorylation. Thus, our data suggest that CD4-induced aggregation of lipid rafts may play an additional role in CD4 signaling besides its adhesion to MHC molecules and association with Lck.  相似文献   

13.
SAP-1 is a transmembrane-type protein-tyrosine phosphatase that is expressed in most tissues but whose physiological functions remain unknown. The cytoplasmic region of SAP-1 has now been shown to bind directly the tyrosine kinase Lck. Overexpression of wild-type SAP-1, but not that of a catalytically inactive mutant of SAP-1, inhibited both the basal and the T cell antigen receptor (TCR)-stimulated activity of Lck in human Jurkat T cell lines. Lck served as a direct substrate for dephosphorylation by SAP-1 in vitro. Overexpression of wild-type SAP-1 in Jurkat cells also: (i) inhibited both the activation of mitogen-activated protein kinase and the increase in cell surface expression of CD69 induced by TCR stimulation; (ii) reduced the extent of the TCR-induced increase in the tyrosine phosphorylation of ZAP-70 or that of LAT; (iii) reduced both the basal level of tyrosine phosphorylation of p62dok, as well as the increase in the phosphorylation of this protein induced by CD2 stimulation; and (iv) inhibited cell migration. These results thus suggest that the direct interaction of SAP-1 with Lck results in inhibition of the kinase activity of the latter and a consequent negative regulation of T cell function.  相似文献   

14.
Park J  Cho NH  Choi JK  Feng P  Choe J  Jung JU 《Journal of virology》2003,77(16):9041-9051
Lipid rafts are proposed to function as platforms for both receptor signaling and trafficking. Following interaction with antigenic peptides, the T-cell receptor (TCR) rapidly translocates to lipid rafts, where it transmits signals and subsequently undergoes endocytosis. The Tip protein of herpesvirus saimiri (HVS), which is a T-lymphotropic tumor virus, interacts with cellular Lck tyrosine kinase and p80, a WD domain-containing endosomal protein. Interaction of Tip with p80 induces enlarged vesicles and recruits Lck and TCR complex into these vesicles for trafficking. We report here that Tip is constitutively present in lipid rafts and that Tip interaction with p80 but not with Lck is necessary for its efficient localization in lipid rafts. The Tip-Lck interaction was required for recruitment of the TCR complex to lipid rafts, and the Tip-p80 interaction was critical for the aggregation and internalization of lipid rafts. These results suggest the potential mechanism for Tip-mediated TCR downregulation: Tip interacts with Lck to recruit TCR complex to lipid rafts, and it subsequently interacts with p80 to initiate the aggregation and internalization of the lipid raft domain and thereby downregulate the TCR complex. Thus, the signaling and targeting functions of HVS Tip rely on two functionally and genetically separable mechanisms that independently target cellular Lck tyrosine kinase and p80 endosomal protein.  相似文献   

15.
CD44 is a cell adhesion molecule implicated in leukocyte adhesion and migration, co-stimulation of T cells, and tumor metastasis. CD45 is a leukocyte-specific protein tyrosine phosphatase that dephosphorylates the Src family kinases, Lck and Fyn, in T cells. Positive regulation of Lck by CD45 is required for its effective participation in T cell receptor signaling events. Here, immobilized CD44 antibody induced a distinctive cell spreading in CD45(-), but not CD45(+), T cells, and this correlated with the induction of tyrosine-phosphorylated proteins. Two focal adhesion family kinases, Pyk2 and, to a lesser extent, FAK were inducibly phosphorylated, as was a potential substrate, Cas. CD44-mediated cell spreading and induced tyrosine phosphorylation were prevented by the Src family kinase inhibitor, PP2. Furthermore, 2-fold more Lck associated with CD44 in the low density sucrose fraction from CD45(-) T cells compared with CD45(+) T cells, suggesting that CD45 may regulate the association of Lck with CD44 in this fraction. Therefore, in CD45(-) T cells, CD44 signaling is mediated by Src family kinases, and this leads to Pyk2 phosphorylation, cytoskeletal changes, and cell spreading. This implicates CD45 in the negative regulation of Src family kinase-mediated CD44 signaling leading to T cell spreading.  相似文献   

16.
To study the mechanism by which protein tyrosine phosphatases (PTPs) regulate CD3-induced tyrosine phosphorylation, we investigated the distribution of PTPs in subdomains of plasma membrane. We report here that the bulk PTP activity associated with T cell membrane is present outside the lipid rafts, as determined by sucrose density gradient sedimentation. In Jurkat T cells, approximately 5--10% of Src homology 2 domain-containing tyrosine phosphatase (SHP-1) is constitutively associated with plasma membrane, and nearly 50% of SHP-2 is translocated to plasma membrane after vanadate treatment. Similar to transmembrane PTP, CD45, the membrane-associated populations of SHP-1 and SHP-2 are essentially excluded from lipid rafts, where other signaling molecules such as Lck, linker for activation of T cells, and CD3 zeta are enriched. We further demonstrated that CD3-induced tyrosine phosphorylation of these substrates is largely restricted to lipid rafts, unless PTPs are inhibited. It suggests that a restricted partition of PTPs among membrane subdomains may regulate protein tyrosine phosphorylation in T cell membrane. To test this hypothesis, we targeted SHP-1 into lipid rafts by using the N-terminal region of Lck (residues 1--14). The results indicate that the expression of Lck/SHP-1 chimera inside lipid rafts profoundly inhibits CD3-induced tyrosine phosphorylation of CD3 zeta/epsilon, IL-2 generation, and nuclear mobilization of NF-AT. Collectively, these results suggest that the exclusion of PTPs from lipid rafts may be a mechanism that potentiates TCR/CD3 activation.  相似文献   

17.
18.
《The Journal of cell biology》1996,135(6):1515-1523
p56lck (Lck) is a lymphoid-specific Src family tyrosine kinase that is critical for T-cell development and activation. Lck is also a membrane protein, and approximately half of the membrane-associated Lck is associated with a glycolipid-enriched membrane (GEM) fraction that is resistant to solubilization by Triton X-100 (TX-100). To compare the membrane-associated Lck present in the GEM and TX-100-soluble fractions of Jurkat cells, Lck from each fraction was immunoblotted with antibody to phosphotyrosine. Lck in the GEM fraction was found to be hyperphosphorylated on tyrosine, and this correlated with a lower kinase specific activity relative to the TX-100-soluble Lck. Peptide mapping and phosphatase diagests showed that the hyperphosphorylation and lower kinase activity of GEM-associated Lck was due to phosphorylation of the regulatory COOH-terminal Tyr505. In addition, we determined that the membrane-bound tyrosine phosphatase CD45 was absent from the GEM fraction. Cells lacking CD45 showed identical phosphorylation of Lck in GEM and TX-100-soluble membranes. We propose that the GEM fraction represents a specific membrane domain present in T-cells, and that the hyperphosphorylation of tyrosine and lower kinase activity of GEM-associated Lck is due to exclusion of CD45 from these domains. Lck associated with the GEM domains may therefore consitute a reservoir of enzyme that can be readily activated.  相似文献   

19.
In T lymphocytes, the Src family kinase Lck associates lipid rafts and accumulates at the immunological synapse (IS) during T cell stimulation by APCs. Using CD4- or CD28-deficient murine T cells, it was suggested that recruitment of Lck to the IS depends on CD4, whereas CD28 sustains Lck activation. However, in human resting T cells, CD28 is responsible for promoting recruitment of lipid rafts to the IS by an unknown mechanism. Thus, we performed a series of experiments to determine 1) whether Lck is recruited to the IS through lipid rafts; and 2) whether Lck recruitment to the IS of human resting T cells depends on CD4 or on CD28 engagement. We found that CD28, but not CD4, stimulation induced recruitment of Lck into detergent-resistant domains as well as its accumulation at the IS. We also found that Lck recruitment to the IS depends on the CD28 COOH-terminal PxxPP motif. Thus, the CD28-3A mutant, generated by substituting the prolines in positions 208, 211, and 212 with alanines, failed to induce Lck and lipid raft accumulation at the synapse. These results indicate that CD28 signaling orchestrates both Lck and lipid raft recruitment to the IS to amplify T cell activation.  相似文献   

20.
Background information. Netrin‐1 is a bi‐functional cue that attracts or repels different classes of neurons during development. The netrin‐1 receptor DCC (deleted in colorectal cancer) acts as a tyrosine kinase‐associated receptor to mediate the attractive response towards netrin‐1. The lipid raft‐localized Src family kinase Fyn is required for DCC‐mediated axon guidance. DCC functions are also dependent on lipid rafts, membrane microdomains corresponding to a low‐density, detergent‐resistant membrane fraction. However, it remains unclear how the association of DCC with lipid rafts controls netrin‐1 signalling. Results. DCC targeted to lipid rafts represented a minor proportion of total DCC inside the cell, but predominated on the cell surface of both IMR‐32 human neuroblastoma cells and embryonic cortical neurons. Netrin‐1 accumulated in lipid rafts, but had no effect on the targeting of DCC to that compartment, with DCC remaining on the cell surface in lipid rafts through 60 min post‐treatment. However, DCC was able to interact with Fyn, both in the lipid rafts and soluble compartments isolated from embryonic E19 rat brains, whereas early downstream signalling components such as Nck‐1, and total and active focal adhesion kinase were mainly localized to the non‐lipid raft compartment. Conclusions. Together, these results suggest that DCC can be found in raft and non‐raft portions of the plasma membrane, with early signalling events propagated by non‐raft associated DCC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号