首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The Streptococcus pneumoniae polA+ gene was introduced into Escherichia coli on the recombinant plasmid pSM31, which is based on the pSC101 replicon. Extracts of E. coli polA5 mutants containing pSM31 showed DNA polymerase activity, indicating that the pneumococcal DNA polymerase I was expressed in the heterospecific host. Complete complementation of the E. coli polA5 mutation by the pneumococcal polA+ gene was detected in excision repair of DNA damage.  相似文献   

2.
Using strains of Escherichia coli K-12 that are deleted for the polA gene, we have reexamined the role of DNA polymerase I (encoded by polA) in postreplication repair after UV irradiation. The polA deletion (in contrast to the polA1 mutation) made uvrA cells very sensitive to UV radiation; the UV radiation sensitivity of a uvrA delta polA strain was about the same as that of a uvrA recF strain, a strain known to be grossly deficient in postreplication repair. The delta polA mutation interacted synergistically with a recF mutation in UV radiation sensitization, suggesting that the polA gene functions in pathways of postreplication repair that are largely independent of the recF gene. When compared to a uvrA strain, a uvrA delta polA strain was deficient in the repair of DNA daughter strand gaps, but not as deficient as a uvrA recF strain. Introduction of the delta polA mutation into uvrA recF cells made them deficient in the repair of DNA double-strand breaks after UV irradiation. The UV radiation sensitivity of a uvrA polA546(Ts) strain (defective in the 5'----3' exonuclease of DNA polymerase I) determined at the restrictive temperature was very close to that of a uvrA delta polA strain. These results suggest a major role for the 5'----3' exonuclease activity of DNA polymerase I in postreplication repair, in the repair of both DNA daughter strand gaps and double-strand breaks.  相似文献   

3.
The antibacterial and mutagenic potency of 9 nitrofurans in "treat and plate" experiments varied over almost 5 orders of magnitude. The relative toxicities were as follows: FANFT greater than AF2 greater than ANFT greather than furazolidone greater than furagin greater than nitrofurantoin greater than nitrofurazone greater than methylnitrofuroate greater than nitrofuroic acid. In general, mutagenic activity paralleled toxicity. The compounds at concentrations corresponding to their LD50's, induced mutations at frequencies which ranged from 2.5/10(6) survivors for FANFT to 130/10(6) survivors for furagin (NF416). The observed differences in antibacterial and mutagenic activity are unlikely to be due to lack of activation of the weaker agents since the two most potent agents were reduced somewhat more slowly than many of the less active agents. The relative sensitivities to the antibacterial effects of AF2 of strains WP2, WP2 uvrA, CM561 (lexA) and CM571 (recA) were 1 : 1.6 : 3 : 7 and to nitrofurazone 1 : 1 : 25 : 50. The wvrA strain was 6--7-fold more mutable with both these agents than was WP2. No increase over the spontaneous mutation frequency was observed when recA or lexA strains were exposed to either AF2 or nitrofurazone in these experiments. When wild-type of wvrA bacteria containing nitrofuran-induced lesions replicated their DNA in drug-free medium in the presence of [3H]thymidine for 5 min, the label was found in low molecular weight DNA indicating that daughter-strand gaps were formed. During subsequent incubation in nonradioactive medium the molecular weight of the DNA increased to the control value. A recA strain (which was very sensitive to the lethal effects of AF2 and nitrofurazone) lacked the ability to repair daughter-strand gaps caused by nitrofuran-induced lesions.  相似文献   

4.
5.
DNA repair mechanisms affecting cytotoxicity by streptozotocin in E. coli   总被引:2,自引:0,他引:2  
Mechanisms underlying cytotoxicity by the monofunctional nitrosourea streptozotocin (STZ) were evaluated in DNA repair-deficient E. coli mutants. Strains not proficient in recombinational repair which lack either RecA protein or RecBC gene products were highly sensitive to STZ. In contrast, cells that constitutively synthesize RecA protein and cannot initiate SOS repair mechanisms because of uncleavable LexA repressor (recAo98 lexA3) were resistant to this drug compared to a lexA3 strain. Further, E. coli cells lacking both 3-methyladenine DNA glycosylases I (tag) and II (alkA) also were highly sensitive to STZ. DNA synthesis was most inhibited by STZ in recA and alkA tag E. coli mutants, but was suppressed less markedly in wild-type and recBC cells. DNA degradation was most extensive in recA E. coli after STZ treatment, while comparable in recBC, alkA tag, and wild-type cells. Although increased single-stranded DNA breaks were present after STZ treatment in recA and recBC mutants compared to the wild type, no significant increase in DNA single-stranded breaks was noted in alkA tag E. coli. Further, DNA breaks in recBC cells were repaired, while those present in recA cells were not. These findings establish the critical importance of both recombinational repair and 3-methyladenine DNA glycosylase in ameliorating cytotoxic effects and DNA damage caused by STZ in E. coli.  相似文献   

6.
7.
N Sharma  P S Fitt 《Mutation research》1990,243(2):165-171
Incubation of Escherichia coli AB1157 in a thiamine-deficient medium causes a large, time-dependent increase in resistance to UV-radiation (254 nm) and a fall in its UV-induced mutation frequency to histidine prototrophy which are abolished in its uvrA mutant, but only delayed in lon- and recA- cells. The response of the lexA3 mutant resembles that of the parental cells. These effects are very similar to those we have shown to be induced by heat shock and are clearly due to an error-free, DNA-excision repair-dependent process. They may represent a general response to non-mutagenic stress in these cells.  相似文献   

8.
Ether-permeabilized (nucleotide-permeable) cells of Escherichia coli show excision repair of their DNA after having been exposed to the carcinogens N-methyl-N-nitrosourea (MeNOUr), N-ethyl-N-nitrosourea (EtNOUr) and methyl methanesulfonate (MeSO2OMe) which are known to bind covalently to DNA. Defect mutations in genes uvrA, uvrB, uvrC, recA, recB, recC and rep did not inhibit this excision repair. Enzymic activities involved in this repair were identified by measuring size reduction of DNA, DNA degradation to acid-soluble nucleotides and repair polymerization. 1. In permeabilized cells methyl and ethyl nitrosourea induced endonucleolytic cleavage of endogenous DNA, as determined by size reduction of denatured DNA in neutral and alkaline sucrose gradients. An enzymic activity from E. coli K-12 cell extracts was purified (greater than 2000-fold) and was found to cleave preferentially methyl-nitrosourea-treated DNA and to convert the methylated supercoiled DNA duplex (RFI) of phage phiX 174 into the nicked circular form. 2. Degradation of alkylated cellular DNA to acid solubility was diminished in a mutant lacking the 5' leads to 3' exonucleolytic activity of DNA polymerase I but was not affected in a mutant which lacked the DNA polymerizing but retained the 5' leads 3' exonucleolytic activity of DNA polymerase I. 3. An easily measurable effect is carcinogen-induced repair polymerization, making it suitable for detection of covalent binding of carcinogens and potentially carcinogenic compounds.  相似文献   

9.
10.
Summary In an attempt to characterise which gene products may be involved in the repair system induced in E. coli by growth on low levels of alkylating agent (the adaptive response) we have analysed mutants deficient in other known pathways of DNA repair for the ability to adapt to MNNG. Adaptive resistance to the killing effects of MNNG seems to require a functional DNA polymerase I whereas resistance to the mutagenic effects can occur in polymerase I deficient strains; similarly killing adaptation could not be observed in a dam3 mutant, which was nonetheless able to show mutational adaptation. These results suggest that these two parts of the adaptive response must, at least to some extent, be separable. Both adaptive responses can be seen in the absence of uvrD + uvrE +-dependent mismatch repair, DNA polymerase II activity, or recF-mediated recombination and they are not affected by decreased levels of adenyl cyclase. The data presented support our earlier conclusion that adaptive resistance to the killing and mutagenic effect of MNNG is the result of previously uncharacterised repair pathways.  相似文献   

11.
12.
Summary We have used a sensitive gel electrophoresis assay to detect the products of Escherichia coli RecA protein catalysed strand exchange reactions between gapped and duplex DNA molecules. We identify structures that correspond to joint molecules formed by homologous pairing, and show that joint molecules are converted by RecA protein into heteroduplex monomers by reciprocal strand exchanges. However, strand exchanges only occur when there is a 3-terminus complementary to the single stranded DNA in the gap. In the absence of a complementary free end, the two DNA molecules pair and short heteroduplex regions are formed by localised interwinding.  相似文献   

13.
Zygotic induction of the rac locus can cause cell death in E. coli   总被引:4,自引:0,他引:4  
Summary Conjugational transfer of the rac locus of E. coli K-12 into a Rac recipient strain (i.e. rac +xrac) results in the killing of a majority of the recipient cells. The efficiency of killing depends somewhat on the plating medium, and can be as high as 98%. The killing is not observed in the rac +xrac+, rac xrac or rac xrac+ configurations. The rac locus, which has the properties of a cryptic prophage, may carry a function analogous to the kil function of bacteriophage lambda, or may instead cause killing by some replication related process.  相似文献   

14.
15.
In E. coli, lesions introduced by agents such as UV radiation, chemical agents, thymine starvation, lead to the induction of a series of bacterial fonctions called the "SOS response" (DNA reparation, mutagenesis, filamentation, prophages induction etc...). Genetics and biochemical study set up the evidences of a regulated mechanism. The central effector of this mechanism is the Rec A protéin. When a cell's DNA is damaged or its DNA replication is inhibited, an inducing signal is generated. The inducing signal reversebly activates a specific protease activity of Rec A which allows it to cleave the Lex A repressor. Thus inducing operons repressed by Lex A. These operons are implicated in DNA reparations and also in cellular division. A coordination between reparation and cellular division is thus established.  相似文献   

16.
Summary Phleomycin, at concentrations above 1 g/ml, induced breakdown of DNA and death in E. coli. Exponentially growing cultures were about 10 times more sensitive to phleomycin than were stationary cultures, and the effect was somewhat dependent on the medium.Excisionless (HCR) mutants of E. coli were insensitive to doses of phleomycin which killed over 99% of wild-type organisms within an hour, while EXR mutants were considerably more sensitive.Mutants of E. coli selected for phleomycin resistance were unable to reactivate U.V. irradiated Tl phage (HCR).It is concluded that the DNA breakdown, inhibition of DNA replication and cell death are a consequence of initial attack by an excision-endonuclease stimulated by the phleomycin.  相似文献   

17.
18.
Single-stranded DNA binding proteins have been known for some time to be crucial in many DNA metabolic reactions in both prokaryotes and eukaryotes. Despite a wealth of studies on these proteins we still do not understand their biochemical mechanism of action. Recent studies of the Escherichia coli single stranded DNA binding protein (SSB) are beginning to provide some insight into how this and similar proteins might function.  相似文献   

19.
Many mutagens and carcinogens damage DNA and elicit repair synthesis in cells. In the present study we report that alkylation of the DNA of Escherichia coli that have been made permeable to nucleotides by toluene treatment results in the expression of a DNA polymerase I-directed repair synthesis. The advantage of the system described here is that it permits measurement of only DNA polymerase I-directed repair synthesis and serves as a simple, rapid method for determining the ability of a given chemical to elicit “excision-repair” in bacteria.DNA ligation is intentionally prevented in our system by addition of the inhibitor nicotinamide mononucleotide. In the absence of DNA ligase activity, nick translation is extensive and an “exaggerated” repair synthesis occurs. This amplification of repair synthesis is unique for DNA polymerase I since it is not observed in mutant cells deficient in this polymerase. DNA ligase apparently controls the extent of nucleotide replacement by this repair enzyme through its ability to rejoin “nicks” thereby terminating the DNA elongation process.The nitrosoamides N-methyl-N-nitrosourea and N-ethyl-N-nitrosourea, as well as the nitrosoamidines N-methyl-N′-nitro-N-nitrosoguanidine and N-ethyl-N′-nitro-N-nitrosoguanidine, elicit DNA polymerase I-directed repair synthesis. Methyl methanesulphonate is especially potent in this regard, while its ethyl derivative, ethyl methanesulphonate, is a poor inducer of DNA polymerase I activity in permeabilized cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号