首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

The presence of glycine receptors was examined with a monoclonal antibody and indirect immunofluorescence on reticular neurons of the goldfish (Carassius auratus) brainstem. Images of thin (0.6μm) optical sections were recorded from 80μm thick specimen with a confocal microscope thus obviating the need for mechanical slicing. Due to the reduced out-of-focus noise, high resolution was obtained. Lookthrough projections were computer generated. Compared with classical methods involving serial sectioning, this approach allowed the analysis of the subcellular distribution of this receptor with a considerable gain of time and increased resolution. On the Mauthner cell, an identified reticulo-spinal neuron, we found, that the size of glycine receptor microdomains varies depending on the cellular localization, i.e. somatic or dendritic. Furthermore the intensity of fluorescence was uneven within individual clusters, probably reflecting differences in receptor concentration. These heterogeneities may influence the variance of synaptic inhibitory noise in different regions of the Mauthner cell.  相似文献   

2.
Abstract

Three monoclonal antibodies were used to examine with immunocytochemistry the distribution of the glycine receptors and the related 93kd polypeptide in the adult goldfish brain (Carassius auratus). One immunoglobulin recognizes the 48kd strychnine-binding subunit of the receptor and the two others bind to the peripheral 93kd polypeptide which is coupled to the receptor molecules. Immunofluorescent spots were visualised with all three antibodies on the somatic and dendritic membrane of the cells.

A differential intensity of immunofluorescence was detected in the three different brain regions examined: the brainstem, the cerebellum and the telencephalon. For both proteins, the highest fluorescence was observed in the brainstem, particularly on reticular and vestibular neurons. In the cerebellum both the density and the intensity of labelling was low. At the level of the Mauthner cell, an identified bulbar command neuron, the distribution of glycinergic receptors was identical with that of the 93kd polypeptide. Both subunits were visualized on the somatic and dendritic membrane up to their extremities.

These proteins appear to be colocalized in neurons other than the Mauthner cell, since they are always co-expressed in the same brain region. Their distributions are comparable with that observed in the mouse and rat nervous system as reported from autoradiographic localization of [3H] strychnine binding.  相似文献   

3.
The effects of the Thr–Ser–Lys–Tyr peptide, which was shown to display neuroprotective activity in cell cultures in vitro, were studied in the model of paired Mauthner cells of goldfish. It was found that intracerebral injections provided the peptide to be applied into the zone of the right Mauthner cell under the fourth ventricle of the hindbrain lead to a dose-dependent decrease in the number of spontaneous turns of the goldfish to the left. It was shown that this effect is not eliminated under long-lasting optokinetic stimulation when the fish instinctively follow stimuli with a low spatial frequency that are moving in the nasal-to-temporal direction. We used the method of three-dimensional reconstruction by serial histological sections to study the dendrite morphology of the Mauthner cells in control and experimental goldfish. It was found that optokinetic stimulation of control goldfish evokes the dystrophy of the ventral dendrite of the right Mauthner cell, which is the target of this type of stimulation. Conversely, the peptide stabilize the size of the ventral dendrite of the right Mauthner cell under stimulation. These data could be interpreted as evidence of the neuroprotective effect of the Thr–Ser–Lys–Tyr peptide in vivo.  相似文献   

4.
Stimulation of the spinal cord of the electric fish Gymnotus carapo, evoked an abrupt increase in the discharge rate of the electric organ. At the maximum of this response, the rate increased an average of 26 ± 11.8%. The duration of the response was 4.9 ± 2.12 s; its latency was 10.4 ± 1.1 ms. Activation of the Mauthner axon played a decisive role in this phenomenon as indicated by the following: (1) recordings from the axon cap of the Mauthner cell demonstrated that the response was evoked if the Mauthner axon was antidromically activated and (2) a response that was similar to that produced by spinal cord stimulation, was elicited by intracellular stimulation of either Mauthner cell. Stimulation of the eighth nerve could also increase the discharge rate of the electric organ. The effect was greater if a Mauthner cell action potential was elicited. The findings described in the present report, indicate the existence of a functional connection between the Mauthner cell and the electromotor system in Gymnotus carapo. This connection may function to enhance the electrolocative sampling of the environment during Mauthner-cell mediated behaviors. This is a novel function for the Mauthner cell.Abbreviations EHP extrinsic hyperpolarizing potential - EOD electric organ discharge - M-AIR Mauthner initiated abrupt increase in rate - M-cell Mauthner cell - M-axon Mauthner axon - PM pacemaker nucleus - PM-cell pacemaker cell - PPn prepacemaker nucleus - SPPn sublemniscal prepacemaker nucleus  相似文献   

5.
The Roundabout (Robo) family of receptors and their Slit ligands play well-established roles in axonal guidance, including in humans where horizontal gaze palsy with progressive scoliosis (HGPPS) is caused by mutations in the robo3 gene. Although significant progress has been made toward understanding the mechanism by which Robo receptors establish commissural projections in the central nervous system, less is known about how these projections contribute to neural circuits mediating behavior. In this study, we report cloning of the zebrafish behavioral mutant twitch twice and show that twitch twice encodes robo3 . We show that in mutant hindbrains the axons of an identified pair of neurons, the Mauthner cells, fail to cross the midline. The Mauthner neurons are essential for the startle response, and in twitch twice / robo3 mutants misguidance of the Mauthner axons results in a unidirectional startle response. Moreover, we show that twitch twice mutants exhibit normal visual acuity but display defects in horizontal eye movements, suggesting a specific and critical role for twitch twice / robo3 in sensory-guided behavior.  相似文献   

6.
Y Mu  XQ Li  B Zhang  JL Du 《Neuron》2012,75(4):688-699
Visual cues often modulate auditory signal processing, leading to improved sound detection. However, the synaptic and circuit mechanism underlying this cross-modal modulation remains poorly understood. Using larval zebrafish, we first established a cross-modal behavioral paradigm in which a preceding flash enhances sound-evoked escape behavior, which is known to be executed through auditory afferents (VIII(th) nerves) and command-like neurons (Mauthner cells). In?vivo recording revealed that the visual enhancement of auditory escape is achieved by increasing sound-evoked Mauthner cell responses. This increase in Mauthner cell responses is accounted for by the increase in the signal-to-noise ratio of sound-evoked VIII(th) nerve spiking and efficacy of VIII(th) nerve-Mauthner cell synapses. Furthermore, the visual enhancement of Mauthner cell response and escape behavior requires light-responsive dopaminergic neurons in the caudal hypothalamus and D1 dopamine receptor activation. Our findings illustrate a cooperative neural mechanism for visual modulation of audiomotor processing that involves dopaminergic neuromodulation.  相似文献   

7.
A single action potential in one of a pair of reticulospinal neurons, the Mauthner cells, precedes a short-latency electromyographic response of the trunk and tail musculature on the opposite side of the body and a fast startle response in goldfish. It has been postulated that not only the Mauthner cell, but also an array of neurons can trigger or participate in fast startle responses (Eaton et al. 1991). We have selectively ablated the Mauthner cells in goldfish to study how neurons of the brainstem fast startle response network interact. The probability of eliciting a fast startle response was significantly less in fish with double Mauthner cell ablations, as compared to the responsiveness of control fish. The finding that there is a significant decrease in the occurrence of fast startle responses in animals with no Mauthner cells, implies that the Mauthner cell may play a role in triggering the involvement of the other network elements in fast startle responses. We hypothesize that Mauthner cell activation may be important in bringing those reticulospinal neurons that are “primed” by the behavioral context to threshold and provides the basis for studies focused on the interactive nature of the brainstem startle response network. Accepted: 4 November 1998  相似文献   

8.
We previously demonstrated the presence of activated areas in the non-injured contralateral sensorimotor cortex in addition to the ipsilateral sensorimotor cortex of the area surrounding a brain infarction, using a rat model of focal photochemically induced thrombosis (PIT) and functional magnetic resonance imaging. Using this model, we next applied gene expression profiling to screen key molecules upregulated in the activated area. RNA was extracted from the ipsilateral and contralateral sensorimotor cortex to the focal brain infarction and from the sham controlled cortex, and hybridized to gene-expression profiling arrays containing 1,322 neurology-related genes. Results showed that glycine receptors were upregulated in both the ipsilateral and contralateral cortex to the focal ischemic lesion. To prove the preclinical significance of upregulated glycine receptors, kynurenic acid, an endogenous antagonist to glycine receptors on neuronal cells, was administered intrathecally. As a result, the kynurenic acid significantly improved behavioral recovery within 10 days from paralysis induced by the focal PIT (p < 0.0001), as evaluated with beam walking. These results suggest that intrathecal administration of a glycine receptor antagonist may facilitate behavioral recovery during the acute phase after brain infarction.  相似文献   

9.
Second‐order sensory neurons are dependent on afferents from the sense organs during a critical period in development for their survival and differentiation. Past research has mostly focused on whole populations of neurons, hampering progress in understanding the mechanisms underlying these critical phases. To move toward a better understanding of the molecular and cellular basis of afferent‐dependent neuronal development, we developed a new model to study the effects of ear removal on a single identifiable cell in the hindbrain of a frog, the Mauthner cell. Ear extirpation at various stages of Xenopus laevis development defines a critical period of progressively‐reduced dependency of Mauthner cell survival/differentiation on the ear afferents. Furthermore, ear removal results in a progressively decreased reduction in the number of dendritic branches. Conversely, addition of an ear results in an increase in the number of dendritic branches. These results suggest that the duration of innervation and the number of inner ear afferents play a quantitative role in Mauthner cell survival/differentiation, including dendritic development. © 2015 Wiley Periodicals, Inc. Develop Neurobiol 75: 1339–1351, 2015  相似文献   

10.
Gephyrin is a bifunctional modular protein that, in neurons, clusters glycine receptors and gamma-aminobutyric acid, type A receptors in the postsynaptic membrane of inhibitory synapses. By x-ray crystallography and cross-linking, the N-terminal G-domain of gephyrin has been shown to form trimers and the C-terminal E-domain dimers, respectively. Gephyrin therefore has been proposed to form a hexagonal submembranous lattice onto which inhibitory receptors are anchored. Here, crystal structure-based substitutions at oligomerization interfaces revealed that both G-domain trimerization and E-domain dimerization are essential for the formation of higher order gephyrin oligomers and postsynaptic gephyrin clusters. Insertion of the alternatively spliced C5' cassette into the G-domain inhibited clustering by interfering with trimerization, and mutation of the glycine receptor beta-subunit binding region prevented the localization of the clusters at synaptic sites. Together our findings show that domain interactions mediate gephyrin scaffold formation.  相似文献   

11.
The present study was designed to examine the synaptic events in neurons of the pacemaker nucleus of Gymnotus carapo during the increase in rate of the electric organ discharge following activation of Mauthner cells. Pacemaker and relay cells were investigated using intracellular recordings which were performed under two different conditions: (1) with the pacemaker nucleus spontaneously discharging and (2) after its activity was abolished by anesthesia. Mauthner axon activation induced an increase in the rate of pacemaker cell discharges. This response was accompanied by an increase in the slope of the pacemaker potential (up to 110%) and a depolarization of these cells. The discharges of relay cells followed one to one those of pacemaker cells. In contrast to that observed in pacemaker cells, only brief depolarizing antidromic effects could be evoked in relay cells after Mauthner axon activation. In quiescent pacemaker cells, Mauthner cell activation induced a prolonged (up to 500 ms) depolarizing potential with an average amplitude of 1.92 ± 0.82 mV; its latency was 4.43 ± 1.14 ms. Our data indicate that, within the pacemaker nucleus, the population of pacemaker cells is the only target for Mauthner cell-evoked, short-latency excitatory synaptic actions. Accepted: 1 March 1997  相似文献   

12.
N-Methyl-D-aspartate receptors are a subclass of ligand-gated, heteromeric glutamatergic neurotransmitter receptors whose cell surface expression is regulated by quality control mechanisms. Functional quality control checkpoints are known to contribute to cell surface trafficking of non-N-methyl-D-aspartate glutamate receptors. Here we investigated if similar mechanisms operate for the surface delivery of NMDA receptors. Point mutations in the glycine binding domain of the NR1-1a subunit were generated: D732A, a mutation that results in an approximately 3 x 10(4) decrease in glycine binding affinity; D732E, a conservative change; and D723A, a residue in the same NR1-1a domain that has no effect on glycine binding affinity. Each NR1-1a subunit was co-expressed with NR2A in mammalian cells. Immunoblotting and immunoprecipitations showed that all mutants were expressed to similar levels as wild-type NR1-1a and associated with NR2A. Cell surface expression measured by an enzyme-linked immunosorbent assay found that whereas NR1-1a (D732E)/NR2A and NR1-1a (D723A)/NR2A trafficked as efficiently as NR1-1a/NR2A, there was a 90% decrease in surface expression for NR1-1a (D732A)/NR2A. This was confirmed by confocal microscopy imaging and cell surface biotinylation. Further imaging showed that NR1-1a (D732A) and co-transfected NR2A co-localized with an endoplasmic reticulum marker. Dichlorokynurenic acid, a competitive glycine site antagonist, partially rescued surface expression. Mutation of the NR1-1a ER retention motif showed that the ligand binding checkpoint is an early event preceding endoplasmic reticulum sorting mechanisms. These findings demonstrate that integrity of the glycine co-agonist binding site is a functional checkpoint requisite for efficient cell surface trafficking of assembled NMDA receptors.  相似文献   

13.
Since the discovery of the major excitatory and inhibitory neurotransmitters and their receptors in the brain, many have deliberated over their likely structures and how these may relate to function. This was initially satisfied by the determination of the first amino acid sequences of the Cys-loop receptors that recognized acetylcholine, serotonin, GABA, and glycine, followed later by similar determinations for the glutamate receptors, comprising non-NMDA and NMDA subtypes. The last decade has seen a rapid advance resulting in the first structures of Cys-loop receptors, related bacterial and molluscan homologs, and glutamate receptors, determined down to atomic resolution. This now provides a basis for determining not just the complete structures of these important receptor classes, but also for understanding how various domains and residues interact during agonist binding, receptor activation, and channel opening, including allosteric modulation. This article reviews our current understanding of these mechanisms for the Cys-loop and glutamate receptor families.To understand how neurons communicate with each other requires a fundamental understanding of neurotransmitter receptor structure and function. Neurotransmitter-gated ion channels, also known as ionotropic receptors, are responsible for fast synaptic transmission. They decode chemical signals into electrical responses, thereby transmitting information from one neuron to another. Their suitability for this important task relies on their ability to respond very rapidly to the transient release of neurotransmitter to affect cell excitability.In the central nervous system (CNS), fast synaptic transmission results in two main effects: neuronal excitation and inhibition. For excitation, the principal neurotransmitter involved is glutamate, which interacts with ionotropic (integral ion channel) and metabotropic (second-messenger signaling) receptors. The ionotropic glutamate receptors are permeable to cations, which directly cause excitation. Acetylcholine and serotonin can also activate specific cation-selective ionotropic receptors to affect neuronal excitation. For controlling cell excitability, inhibition is important, and this is mediated by the neurotransmitters GABA and glycine, causing an increased flux of anions. GABA predominates as the major inhibitory transmitter throughout the CNS, whereas glycine is of greater importance in the spinal cord and brainstem. They both activate specific receptors—for GABA, there are ionotropic and metabotropic receptors, whereas for glycine, only ionotropic receptors are known to date.Together with acetylcholine- and serotonin-gated channels, GABA and glycine ionotropic receptors form the superfamily of Cys-loop receptors, which differs in many aspects from the superfamily of ionotropic glutamate receptors. Over the last two decades, our knowledge of the structure and function of ionotropic receptors has grown rapidly. In this article, we summarize our current understanding of the molecular operation of these receptors and how we can now begin to interpret the role of receptor structure in agonist binding, channel activation, and allosteric modulation of Cys-loop and glutamate receptor families. Further details on the regulation and trafficking of neurotransmitter receptors in synaptic structure and plasticity can be found in accompanying articles.  相似文献   

14.
N-methyl-D-aspartate (NMDA) receptors, whose activation requires glycine site stimulation, play crucial roles in various physiological and pathological conditions in the brain. We investigated the regulatory roles of potential endogenous glycine site agonists, glycine and d-serine, in excitotoxic and ischemic cell death in the cerebral cortex. Cytotoxicity of NMDA on rat cerebrocortical slice cultures was potentiated by addition of glycine or d-serine. In contrast, cell death induced by oxygen/glucose deprivation (OGD) was not affected by exogenous glycine or d-serine, although blockade of NMDA receptors by MK-801 abolished cell death. In addition, higher concentrations of 2,7-dichlorokynurenic acid (DCKA), a competitive glycine site antagonist, were required to suppress OGD-induced cell death than those to suppress NMDA cytotoxicity. We also found that OGD triggered a robust increase in extracellular glycine. A glycine transporter blocker ALX 5407 increased the extracellular level of glycine, and the protective effect of DCKA against NMDA cytotoxicity was diminished in the presence of ALX 5407. Sensitivity of NMDA cytotoxicity to DCKA was also diminished by l-serine that increased the extracellular level of d-serine. These results indicate that both glycine and d-serine can act as endogenous ligands for NMDA receptor glycine site in the cerebral cortex, and that endogenous glycine may saturate the glycine site under ischemic conditions. The present findings are important for the interpretation of the mechanisms of NMDA and OGD cytotoxicity.  相似文献   

15.
Intracellular injections of horseradish peroxidase provided a basis for morphological identification of inhibitory interneurons belonging to the recurrent collateral network of the Mauthner cell. Their axons dilate to form unusually large bulbs surrounding the axon cap. The morphological appearance of these bulbs as well as intracellular recordings at their level indicate that they behave as nodes and serve as a final source of current for electrical inhibition of the Mauthner cell. The axon of each interneuron gives rise to two different groups of fibres which are respectively fitted for the mediation of electrical and chemical inhibitions of their target cell.  相似文献   

16.
Neurons often contain, and probably release, more than one neuroactive substance that may have diverse or opposite actions on the postsynaptic cell. It remains unexplained how these neurons utilize their multiple neuroactive substances while maintaining appropriate resolution of neurotransmitter functions. Here, we have examined the ultrastructural localization of glycine receptors by using a monoclonal antibody directed to the intracellular domain of the strychnine-sensitive glycine receptor. We have found that glycine receptors are only localized to 56% of the synapses made by presumed 'glycinergic' (more accurately, glycine-utilizing) amacrine cells in the turtle retina. The remaining synapses made by these same boutons show no evidence of glycine receptors. As there is no evidence to suggest the presence of a second type of glycine receptor, these data indicate that only a portion of the postsynaptic sites contacted by the glycine-utilizing neurons can respond to glycine. They also suggest that a neuron containing multiple neuroactive substances can selectively affect postsynaptic elements by means of heterogeneous receptor localization.  相似文献   

17.
The distributions of terminals containing gamma-aminobutyric acid (GABA) and of endings apposed to glycine receptors were investigated cytochemically in the ventral horn of the rat spinal cord. For this purpose, a polyclonal antibody raised to recognize glutamic acid decarboxylase (GAD), a synthetic enzyme for GABA, and three monoclonal antibodies (mAb's) directed against the glycine receptor were used. Double immunofluorescence showed that, surprisingly, GAD-positive terminals are closely associated in this system with glycine receptors at all the investigated cells, most of which were spinal motoneurons. Furthermore, double labeling was performed with immunoenzymatic recognition of GAD and indirect marking of mAb's with colloidal gold. With this combined approach, it was found, at the electron microscopic level, that all GAD-positive terminals are in direct apposition with glycine receptors while, on the other hand, not all glycine receptors are in front of GABA-containing boutons. This result is not due to a cross-reactivity of mAb's with GABA receptors as shown by using as a control synapses known to use GABA as a neurotransmitter in the cerebellar cortex. Indeed, no glycine receptor immunoreactivity was detected on Purkinje cells facing basket axon terminals. However, Purkinje neurons can express glycine receptor immunoreactivity at other synaptic contacts. Assuming that the presence of postsynaptic receptors for glycine indicates that this amino acid is used for neurotransmission at a given synapse, our results strongly support the notion that GABA and glycine, two classical inhibitory transmitters, coexist at some central connections. However, such is not always the case; in the cerebellum, Golgi terminals impinging on the dendrites of granule cells are either GAD-positive or face glycine receptors, in a well-segregated manner.  相似文献   

18.
PROTEIN SYNTHESIS IN THE ISOLATED MAUTHNER NERVE FIBRE OF GOLDFISH   总被引:2,自引:0,他引:2  
Abstract— Mauthner nerve fibres isolated from the spinal cord of goldfish were incubated, in the presence of radioactive amino acids for varying periods of time. It was found that the Mauthner fibre synthesizes proteins in the absence of cell nuclei. Amino acid incorporation showed sensitivity to puromycin and to acetoxycycloheximide but resistance to chloramphenicol. Only slight inhibition was caused by actinomycin-D. The contribution of the denuded axon to the total protein synthesis was about 30 per cent per unit length Mauthner fibre. The remaining activity was due to the myelin sheath compartment. Fractionation experiments showed that the incorporation in the sheath was due to components other than the myelin lamellae. The subcellular distribution of newly synthesized proteins in the isolated and incubated Mauthner fibre was compared to that found in the incubated spinal cord. The results strongly suggested the existence in the Mauthner fibre of a primary microsomal, rather than a mitochondrial, protein synthesizing system.  相似文献   

19.
Glycine residues may play functional and structural roles in membrane proteins. In this work we studied the role of glycine residues in EmrE, a small multidrug transporter from Escherichia coli. EmrE extrudes various drugs across the plasma membrane in exchange with protons and, as a result, confers resistance against their toxic effects. Each of 12 glycine residues was replaced by site-directed mutagenesis. Four of the 12 glycine residues in EmrE are evolutionary conserved within the small multidrug resistance family of multidrug transporters. Our analysis reveals that only two (Gly-67 and Gly-97) of these four highly conserved residues are essential for transporter activity. Moreover, two glycine positions that are less conserved, Gly-17 and Gly-90, demonstrate also a nil phenotype when substituted. Our present results identifying Gly-17 and Gly-67 as irreplaceable reinforce the importance of previously defined functional clusters. Two essential glycine residues, Gly-90 and Gly-97, form a protein motif in which glycine residues are separated by six other residues (GG7). Upon substitution of glycine in these positions, the protein ability to form dimers is impaired as evaluated by cross-linking and pull-down experiments.  相似文献   

20.
Strychnine-sensitive glycine receptors mediate inhibitory neurotransmission occurring in the brain stem and spinal cord. Alcohols, volatile anesthetics and inhaled drugs of abuse are positive allosteric modulators of glycine receptor function, normally enhancing function only in the presence of glycine. A complication in studying allosteric actions on ligand-gated ion channels is in the dissection of their effects on neurotransmitter binding from their effects on channel opening. Mutation of an aspartate residue at position 97 to arginine in the glycine receptor alpha1 subunit simulated the effects of glycine binding, producing receptors that exhibited tonic channel opening in the absence of neurotransmitter; i.e. these receptors demonstrated a dissociation of channel opening from neurotransmitter binding. In these receptors, ethanol, enflurane, chloroform, halothane, 1,1,1-trichloroethane and toluene elicited inward currents in the absence of glycine. We previously identified mutations on ligand-gated ion channels that eliminate ethanol, anesthetic and inhalant actions (such as S267I on alpha1 glycine receptors). The double mutant (D97R and S267I) receptors were both constitutively active and resistant to the enhancing effects of ethanol and enflurane. These data demonstrate that ethanol and volatile anesthetics can affect glycine receptor channel opening independently of their effects on enhancing neurotransmitter binding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号