首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Chronic inflammation involving constant generation of nitric oxide (NO) by macrophages has been recognized as a factor related to carcinogenesis. At the site of inflammation, nitrosatively deaminated DNA adducts such as 2′-deoxyinosine (dI) and 2′-deoxyxanthosine are primarily formed by NO and may be associated with the development of cancer. In this study, we explored the miscoding properties of the dI lesion generated by Y-family DNA polymerases (pols) using a new fluorescent method for analyzing translesion synthesis. An oligodeoxynucleotide containing a single dI lesion was used as a template in primer extension reaction catalyzed by human DNA pols to explore the miscoding potential of the dI adduct. Primer extension reaction catalyzed by pol α was slightly retarded prior to the dI adduct site; most of the primers were extended past the lesion. Pol η and pol κΔC (a truncated form of pol κ) readily bypassed the dI lesion. The fully extended products were analyzed by using two-phased PAGE to quantify the miscoding frequency and specificity occurring at the lesion site. All pols, that is, pol α, pol η, and pol κΔC, promoted preferential incorporation of 2′-deoxycytidine monophosphate (dCMP), the wrong base, opposite the dI lesion. Surprisingly, no incorporation of 2′-deoxythymidine monophosphate, the correct base, was observed opposite the lesion. Steady-state kinetic studies with pol α, pol η, and pol κΔC indicated that dCMP was preferentially incorporated opposite the dI lesion. These pols bypassed the lesion by incorporating dCMP opposite the lesion and extended past the lesion. These relative bypass frequencies past the dC:dI pair were at least 3 orders of magnitude higher than those for the dT:dI pair. Thus, the dI adduct is a highly miscoding lesion capable of generating A → G transition. This NO-induced adduct may play an important role in initiating inflammation-driven carcinogenesis.  相似文献   

2.
Chronic inflammation is known to lead to an increased risk for the development of cancer. Under inflammatory condition, cellular DNA is damaged by hypobromous acid, which is generated by myeloperoxidase and eosinophil peroxidase. The reactive brominating species induced brominated DNA adducts such as 8-bromo-2′-deoxyguanosine (8-Br-dG), 8-bromo-2′-deoxyadenosine (8-Br-dA), and 5-bromo-2′-deoxycytidine (5-Br-dC). These DNA lesions may be implicated in carcinogenesis. In this study, we analyzed the miscoding properties of the brominated DNA adducts generated by human DNA polymerases (pols). Site-specifically modified oligodeoxynucleotides containing a single 8-Br-dG, 8-Br-dA, or 5-Br-dC were used as a template in primer extension reactions catalyzed by human pols α, κ, and η. When 8-Br-dG-modified template was used, pol α primarily incorporated dCMP, the correct base, opposite the lesion, along with a small amount of one-base deletion (4.8%). Pol κ also promoted one-base deletion (14.2%), accompanied by misincorporation of dGMP (9.5%), dAMP (8.0%), and dTMP (6.1%) opposite the lesion. Pol η, on the other hand, readily bypassed the 8-Br-dG lesion in an error-free manner. As for 8-Br-dA and 5-Br-dC, all the pols bypassed the lesions and no miscoding events were observed. These results indicate that only 8-Br-dG, and not 5-Br-dC and 8-Br-dA, is a mutagenic lesion; the miscoding frequency and specificity vary depending on the DNA pol used. Thus, hypobromous acid-induced 8-Br-dG adduct may increase mutagenic potential at the site of inflammation.  相似文献   

3.
In the presence of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) damage, many DNA polymerases exhibit a dual coding potential which facilitates efficient incorporation of matched dCTP or mismatched dATP. This also holds true for the insertion of 8-oxodGTP opposite template bases dC and dA. Employing single-turnover kinetic methods, we examined human DNA polymerase beta and its novel X-family homolog, human DNA polymerase lambda, to determine which nucleotide and template base was preferred when encountering 8-oxodG and 8-oxodGTP, respectively. While DNA polymerase beta preferentially incorporated dCTP over dATP, DNA polymerase lambda did not modulate a preference for either dCTP or dATP when opposite 8-oxodG in single-nucleotide gapped DNA, as incorporation proceeded with essentially equal efficiency and probability. Moreover, DNA polymerase lambda is more efficient than DNA polymerase beta to fill this oxidized single-nucleotide gap. Insertion of 8-oxodGTP by both DNA polymerases lambda and beta occurred predominantly against template dA, thereby reiterating how the asymmetrical design of the polymerase active site differentially accommodated the anti and syn conformations of 8-oxodG and 8-oxodGTP. Although the electronegative oxygen at the C8 position of 8-oxodG may induce DNA structural perturbations, human DNA ligase I was found to effectively ligate the incorporated 8-oxodGMP to a downstream strand, which sealed the nicked DNA. Consequently, the erroneous nucleotide incorporations catalyzed by DNA polymerases lambda and beta as well as the subsequent ligation catalyzed by a DNA ligase during base excision repair are a threat to genomic integrity.  相似文献   

4.
To link conformational transitions noted for DNA polymerases with kinetic results describing catalytic efficiency and fidelity, we investigate the role of key DNA polymerase beta residues on subdomain motion through simulations of five single-residue mutants: Arg-283-Ala, Tyr-271-Ala, Asp-276-Val, Arg-258-Lys, and Arg-258-Ala. Since a movement toward a closed state was only observed for R258A, we suggest that Arg(258) is crucial in modulating motion preceding chemistry. Analyses of protein/DNA interactions in the mutant active site indicate distinctive hydrogen bonding and van der Waals patterns arising from compensatory structural adjustments. By comparing closed mutant complexes with the wild-type enzyme, we interpret experimentally derived nucleotide binding affinities in molecular terms: R283A (decreased), Y271A (increased), D276V (increased), and R258A (decreased). Thus, compensatory interactions (e.g., in Y271A with adjacent residues Phe(272), Asn(279), and Arg(283)) increase the overall binding affinity for the incoming nucleotide although direct interactions may decrease. Together with energetic analyses, we predict that R258G might increase the rate of nucleotide insertion and maintain enzyme fidelity as R258A; D276L might increase the nucleotide binding affinity more than D276V; and R283A/K280A might decrease the nucleotide binding affinity and increase misinsertion more than R283A. The combined observations regarding key roles of specific residues (e.g., Arg(258)) and compensatory interactions echo the dual nature of polymerase active site, namely versatility (to accommodate various basepairs) and specificity (for preserving fidelity) and underscore an organized but pliant active site essential to enzyme function.  相似文献   

5.
Most classical DNA polymerases, which function in normal DNA replication and repair, are unable to synthesize DNA opposite damage in the template strand. Thus in order to replicate through sites of DNA damage, cells are equipped with a variety of nonclassical DNA polymerases. These nonclassical polymerases differ from their classical counterparts in at least two important respects. First, nonclassical polymerases are able to efficiently incorporate nucleotides opposite DNA lesions while classical polymerases are generally not. Second, nonclassical polymerases synthesize DNA with a substantially lower fidelity than do classical polymerases. Many nonclassical polymerases are members of the Y-family of DNA polymerases, and this article focuses on the mechanisms of the four eukaryotic members of this family: polymerase eta, polymerase kappa, polymerase iota, and the Rev1 protein. We discuss the mechanisms of these enzymes at the kinetic and structural levels with a particular emphasis on how they accommodate damaged DNA substrates. Work over the last decade has shown that the mechanisms of these nonclassical polymerases are fascinating variations of the mechanism of the classical polymerases. The mechanisms of polymerases eta and kappa represent rather minor variations, while the mechanisms of polymerase iota and the Rev1 protein represent rather major variations. These minor and major variations all accomplish the same goal: they allow the nonclassical polymerases to circumvent the problems posed by the template DNA lesion.  相似文献   

6.
Living cells possess a panel of specialized DNA polymerases that deal with the large diversity of DNA lesions that occur in their genomes. How specialized DNA polymerases gain access to the replication intermediate in the vicinity of the lesion is unknown. Using a model system in which a single replication blocking lesion can be bypassed concurrently by two pathways that leave distinct molecular signatures, we analyzed the complex interplay among replicative and specialized DNA polymerases. The system involves a single N-2-acetylaminofluorene guanine adduct within the NarI frameshift hot spot that can be bypassed concurrently by Pol II or Pol V, yielding a −2 frameshift or an error-free bypass product, respectively. Reconstitution of the two pathways using purified DNA polymerases Pol III, Pol II and Pol V and a set of essential accessory factors was achieved under conditions that recapitulate the known in vivo requirements. With this approach, we have identified the key replication intermediates that are used preferentially by Pol II and Pol V, respectively. Using single-hit conditions, we show that the β-clamp is critical by increasing the processivity of Pol II during elongation of the slipped −2 frameshift intermediate by one nucleotide which, surprisingly, is enough to support subsequent elongation by Pol III rather than degradation. Finally, the proofreading activity of the replicative polymerase prevents the formation of a Pol II-mediated −1 frameshift product. In conclusion, failure or success of TLS pathways appears to be the net result of a complex interplay among DNA polymerases and accessory factors.  相似文献   

7.
High fidelity DNA polymerases maintain genomic fidelity through a series of kinetic steps that include nucleotide binding, conformational changes, phosphoryl transfer, polymerase translocation, and nucleotide excision. Developing a comprehensive understanding of how these steps are coordinated during correct and pro-mutagenic DNA synthesis has been hindered due to lack of spectroscopic nucleotides that function as efficient polymerase substrates. This report describes the application of a non-natural nucleotide designated 5-naphthyl-indole-2′-deoxyribose triphosphate which behaves as a fluorogenic substrate to monitor nucleotide incorporation and excision during the replication of normal DNA versus two distinct DNA lesions (cyclobutane thymine dimer and an abasic site). Transient fluorescence and rapid-chemical quench experiments demonstrate that the rate constants for nucleotide incorporation vary as a function of DNA lesion. These differences indicate that the non-natural nucleotide can function as a spectroscopic probe to distinguish between normal versus translesion DNA synthesis. Studies using wild-type DNA polymerase reveal the presence of a fluorescence recovery phase that corresponds to the formation of a pre-excision complex that precedes hydrolytic excision of the non-natural nucleotide. Rate constants for the formation of this pre-excision complex are dependent upon the DNA lesion, and this suggests that the mechanism of exonuclease proofreading is regulated by the nature of the formed mispair. Finally, spectroscopic evidence confirms that exonuclease proofreading competes with polymerase translocation. Collectively, this work provides the first demonstration for a non-natural nucleotide that functions as a spectroscopic probe to study the coordinated efforts of polymerization and exonuclease proofreading during correct and translesion DNA synthesis.  相似文献   

8.
Numerous template-dependent DNA polymerases are capable of catalyzing template-independent nucleotide additions onto blunt-end DNA. Such non-canonical activity has been hypothesized to increase the genomic hypermutability of retroviruses including human immunodeficiency viruses. Here, we employed pre-steady state kinetics and X-ray crystallography to establish a mechanism for blunt-end additions catalyzed by Sulfolobus solfataricus Dpo4. Our kinetic studies indicated that the first blunt-end dATP incorporation was 80-fold more efficient than the second, and among natural deoxynucleotides, dATP was the preferred substrate due to its stronger intrahelical base-stacking ability. Such base-stacking contributions are supported by the 41-fold higher ground-state binding affinity of a nucleotide analog, pyrene nucleoside 5'-triphosphate, which lacks hydrogen bonding ability but possesses four conjugated aromatic rings. A 2.05 A resolution structure of Dpo4*(blunt-end DNA)*ddATP revealed that the base and sugar of the incoming ddATP, respectively, stack against the 5'-base of the opposite strand and the 3'-base of the elongating strand. This unprecedented base-stacking pattern can be applied to subsequent blunt-end additions only if all incorporated dAMPs are extrahelical, leading to predominantly single non-templated dATP incorporation.  相似文献   

9.

Background

The design of anticancer metallodrugs is currently focused on platinum complexes which form on DNA major adducts that cannot readily be removed by DNA repair systems. Hence, antitumor azolato-bridged dinuclear PtII complexes, such as [{cis-Pt(NH3)2}2(μ‐OH)(μ-pyrazolate)]2+ (AMPZ), have been designed and synthesized. These complexes exhibit markedly higher toxic effects in tumor cell lines than mononuclear conventional cisplatin.

Methods

Biophysical and biochemical aspects of the alterations induced in short DNA duplexes uniquely and site-specifically modified by the major DNA adduct of AMPZ, namely 1,2-GG intrastrand cross-links, were examined. Attention was also paid to conformational distortions induced in DNA by the adducts of AMPZ and cisplatin, associated alterations in the thermodynamic stability of the duplexes, and recognition of these adducts by high-mobility-group (HMG) domain proteins.

Results

Chemical probing of DNA conformation, DNA bending studies and translesion synthesis by DNA polymerase across the platinum adduct revealed that the distortion induced in DNA by the major adduct of AMPZ was significantly less pronounced than that induced by similar cross-links from cisplatin. Concomitantly, the cross-link from AMPZ reduced the thermodynamic stability of the modified duplex considerably less. In addition, HMGB1 protein recognizes major DNA adducts of AMPZ markedly less than those of cisplatin.

General significance

The experimental evidence demonstrates why the major DNA adducts of the new anticancer azolato-bridged dinuclear PtII complexes are poor substrates for DNA repair observed in a previously published report. The relative resistance to DNA repair explains why these platinum complexes show major pharmacological advantages over cisplatin in tumor cells.  相似文献   

10.
Adduct-induced conformational heterogeneity complicates the understanding of how DNA adducts exert mutation. A case in point is the N-deacetylated AF lesion [N-(2'-deoxyguanosin-8-yl)-2-aminofluorene], the major adduct derived from the strong liver carcinogen N-acetyl-2-aminofluorene. Three conformational families have been previously characterized and are dependent on the positioning of the aminofluorene rings: B is in the "B-DNA" major groove, S is "stacked" into the helix with base-displacement, and W is "wedged" into the minor groove. Here, we conducted (19)F NMR, CD, T(m), and modeling experiments at various primer positions with respect to a template modified by a fluorine tagged AF-adduct (FAF). In the first set, the FAF-G was paired with C and in the second set it was paired with A. The FAF-G:C oligonucleotides were found to preferentially adopt the B or S-conformers while the FAF-G:A mismatch ones preferred the B and W-conformers. The conformational preferences of both series were dependent on temperature and complementary strand length; the largest differences in conformation were displayed at lower temperatures. The CD and T(m) results are in general agreement with the NMR data. Molecular modeling indicated that the aminofluorene moiety in the minor groove of the W-conformer would impose a steric clash with the tight-packing amino acid residues on the DNA binding area of the Bacillus fragment (BF), a replicative DNA polymerase. In the case of the B-type conformer, the carcinogenic moiety resides in the solvent-exposed major groove throughout the replication/translocation process. The present dynamic NMR results, combined with previous primer extension kinetic data by Miller & Grollman, support a model in which adduct-induced conformational heterogeneities at positions remote from the replication fork affect polymerase function through a long-range DNA-protein interaction.  相似文献   

11.
The model carcinogen N-2-acetylaminofluorene covalently binds to the C8 position of guanine to form two adducts, the N-(2′-deoxyguanosine-8-yl)-aminofluorene (G-AF) and the N-2-(2′-deoxyguanosine-8-yl)-acetylaminofluorene (G-AAF). Although they are chemically closely related, their biological effects are strongly different and they are processed by different damage tolerance pathways. G-AF is bypassed by replicative and high-fidelity polymerases, while specialized polymerases ensure synthesis past of G-AAF. We used the DNA polymerase I fragment of a Bacillus stearothermophilus strain as a model for a high-fidelity polymerase to study the kinetics of incorporation of deoxy-CTP (dCTP) opposite a single G-AF. Pre-steady-state kinetic experiments revealed a drastic reduction in dCTP incorporation performed by the G-AF-modified ternary complex. Two populations of these ternary complexes were identified: (i) a minor productive fraction (20%) that readily incorporates dCTP opposite the G-AF adduct with a rate similar to that measured for the adduct-free ternary complexes and (ii) a major fraction of unproductive complexes (80%) that slowly evolve into productive ones. In the light of structural data, we suggest that this slow rate reflects the translocation of the modified base within the active site, from the pre-insertion site into the insertion site. By making this translocation rate limiting, the G-AF lesion reveals a novel kinetic step occurring after dNTP binding and before chemistry.  相似文献   

12.
Uracil-DNA glycosylase (UDG) removes uracil generated by the deamination of cytosine or misincorporation of deoxyuridine monophosphate. Within the UDG superfamily, a fifth UDG family lacks a polar residue in the active-site motif, which mediates the hydrolysis of the glycosidic bond by activation of a water molecule in UDG families 1-4. We have determined the crystal structure of a novel family 5 UDG from Thermus thermophilus HB8 complexed with DNA containing an abasic site. The active-site structure suggests this enzyme uses both steric force and water activation for its excision reaction. A conserved asparagine residue acts as a ligand to the catalytic water molecule. The structure also implies that another water molecule acts as a barrier during substrate recognition. Based on no significant open-closed conformational change upon binding to DNA, we propose a "slide-in" mechanism for initial damage recognition.  相似文献   

13.
The mechanism of the severe quenching of chlorophyll (Chl) fluorescence under drought stress was studied in a lichen Physciella melanchla, which contains a photobiont green alga, Trebouxia sp., using a streak camera and a reflection-mode fluorescence up-conversion system. We detected a large 0.31 ps rise of fluorescence at 715 and 740 nm in the dry lichen suggesting the rapid energy influx to the 715-740 nm bands from the shorter-wavelength Chls with a small contribution from the internal conversion from Soret bands. The fluorescence, then, decayed with time constants of 23 and 112 ps, suggesting the rapid dissipation into heat through the quencher. The result confirms the accelerated 40 ps decay of fluorescence reported in another lichen (Veerman et al., 2007 [36]) and gives a direct evidence for the rapid energy transfer from bulk Chls to the longer-wavelength quencher. We simulated the entire PS II fluorescence kinetics by a global analysis and estimated the 20.2 ns− 1 or 55.0 ns− 1 energy transfer rate to the quencher that is connected either to the LHC II or to the PS II core antenna. The strong quenching with the 3-12 times higher rate compared to the reported NPQ rate, suggests the operation of a new type of quenching, such as the extreme case of Chl-aggregation in LHCII or a new type of quenching in PS II core antenna in dry lichens.  相似文献   

14.
F(420) is a flavin-like redox-active coenzyme commonly used by archaea and some eubacteria in a variety of biochemical reactions in methanogenesis, the formation of secondary metabolites, the degradation of nitroaromatic compounds, activation of nitroimidazofurans, and F(420)-dependent photolysis in DNA repair. Coenzyme F(420)-2 biosynthesis from 7,8-didemethyl-8-hydroxy-5-deazariboflavin (Fo) and lactaldehyde involves six enzymatic steps and five proteins (CofA, CofB, CofC, CofD, and CofE). CofE, a F(420)-0:gamma-glutamyl ligase, is responsible for the last two enzymatic steps; it catalyses the GTP-dependent addition of two L-glutamate residues to F(420)-0 to form F(420)-2. CofE is found in archaea, the aerobic actinomycetes, and cyanobacteria. Here, we report the first crystal structure of the apo-F(420)-0:gamma-glutamyl ligase (CofE-AF) from Archaeoglobus fulgidus and its complex with GDP at 2.5 A and 1.35 A resolution, respectively. The structure of CofE-AF reveals a novel protein fold with an intertwined, butterfly-like dimer formed by two-domain monomers. GDP and Mn(2+) are bound within the putative active site in a large groove at the dimer interface. We show that the enzyme adds a glutamate residue to both F(420)-0 and F(420)-1 in two distinct steps. CofE represents the first member of a new structural family of non-ribosomal peptide synthases.  相似文献   

15.
Chi LM  Lam SL 《FEBS letters》2006,580(27):6496-6500
Slipped frameshift intermediates can occur when DNA polymerase slows or stalls at sites of DNA lesions. However, this phenomenon is much less common when unmodified DNA is replicated. In order to study the effect of templating bases on the alignment of primer-templates, NMR structural investigation has been performed on primer-template oligonucleotide models which mimic the situation that dNTP has just been incorporated opposite template. NMR evidence reveals the occurrence of misalignment when dGTP is incorporated opposite template T with a downstream nucleotide C. Depending on the template sequence, further extension of the primer can lead to realignment.  相似文献   

16.
DNA is subject to a multitude of oxidative damages generated by oxidizing agents from metabolism and exogenous sources and by ionizing radiation. Guanine is particularly vulnerable to oxidation, and the most common oxidative product 8-oxoguanine (8-oxoG) is the most prevalent lesion observed in DNA molecules. 8-OxoG can form a normal Watson-Crick pair with cytosine (8-oxoG:C), but it can also form a stable Hoogsteen pair with adenine (8-oxoG:A), leading to a G:C → T:A transversion after replication. Fortunately, 8-oxoG is recognized and excised by either of two DNA glycosylases of the base excision repair pathway: formamidopyrimidine-DNA glycosylase and 8-oxoguanine DNA glycosylase (Ogg). While Clostridium acetobutylicum Ogg (CacOgg) DNA glycosylase can specifically recognize and remove 8-oxoG, it displays little preference for the base opposite the lesion, which is unusual for a member of the Ogg1 family. This work describes the crystal structures of CacOgg in its apo form and in complex with 8-oxo-2′-deoxyguanosine. A structural comparison between the apo form and the liganded form of the enzyme reveals a structural reorganization of the C-terminal domain upon binding of 8-oxoG, similar to that reported for human OGG1. A structural comparison of CacOgg with human OGG1, in complex with 8-oxoG containing DNA, provides a structural rationale for the lack of opposite base specificity displayed by CacOgg.  相似文献   

17.
The mechanism of pH-triggered destabilization of liposomes composed of a polyethyleneglycol-orthoester-distearoylglycerol lipid (POD) and phosphatidyl ethanolamine (PE) has been studied using an ANTS/DPX leakage and a lipid-mixing assay. We developed a kinetic model that relates POD hydrolysis to liposome collapse. This minimum-surface-shielding model describes the kinetics of the pH-triggered release of POD/PE liposomes. In the model, when acid-catalyzed hydrolysis lowers the mole percentage of POD on the liposome surface to a critical level, intervesicular lipid mixing is initiated, resulting in a burst of contents release. Two phases of content leakage are observed: a lag phase and a burst phase. During the lag phase, less than 20% of liposomal contents are released and the leakage begins to accelerate when approaching to the transition point. During the burst phase, the leakage rate is dependent on interbilayer contact. The burst phase occurs when the surface density of the PEG lipid is 2.3 +/- 0.6 mol%, regardless of the pH. Vesicles containing 4 mol% of a pH-insensitive PEG-lipid conjugate and 10% POD did not leak contents or collapse at any pH. These data are consistent with the stalk theory to describe the lamellar-to-inverted hexagonal phase transition and set a lower bound of approximately 16 PE lipids on the external monolayer as the contact site required for lipid mixing between two bilayers.  相似文献   

18.
Selective binding of the wild type tumor suppressor protein p53 to negatively and positively supercoiled (sc) DNA was studied using intercalative drugs chloroquine (CQ), ethidium bromide, acridine derivatives and doxorubicin as a modulators of the level of DNA supercoiling. The p53 was found to lose gradually its preferential binding to negatively scDNA with increasing concentrations of intercalators until the DNA negative superhelix turns were relaxed. Formation of positive superhelices (due to further increasing intercalator concentrations) rendered the circular duplex DNA to be preferentially bound by the p53 again. CQ at concentrations modulating the closed circular DNA topology did not prevent the p53 from recognizing a specific target sequence within topologically unconstrained linear DNA. Experiments with DNA topoisomer distributions differing in their superhelix densities revealed the p53 to bind selectively DNA molecules possessing higher number of negative or positive superturns. Possible modes of the p53 binding to the negatively or positively supercoiled DNA and tentative biological consequences are discussed.  相似文献   

19.
Deoxyinosine (dI) and deoxyxanthosine (dX) are both formed in DNA at appreciable levels in vivo by deamination of deoxyadenosine (dA) and deoxyguanosine (dG), respectively, and can miscode. Structure-activity relationships for dA pairing have been examined extensively using analogs but relatively few studies have probed the roles of the individual hydrogen-bonding atoms of dG in DNA replication. The replicative bacteriophage T7 DNA polymerase/exonuclease and the translesion DNA polymerase Sulfolobus solfataricus pol IV were used as models to discern the mechanisms of miscoding by DNA polymerases. Removal of the 2-amino group from the template dG (i.e., dI) had little impact on the catalytic efficiency of either polymerase, as judged by either steady-state or pre-steady-state kinetic analysis, although the misincorporation frequency was increased by an order of magnitude. dX was highly miscoding with both polymerases, and incorporation of several bases was observed. The addition of an electronegative fluorine atom at the 2-position of dI lowered the oligonucleotide Tm and strongly inhibited incorporation of dCTP. The addition of bromine or oxygen (dX) at C2 lowered the Tm further, strongly inhibited both polymerases, and increased the frequency of misincorporation. Linear activity models show the effects of oxygen (dX) and the halogens at C2 on both DNA polymerases as mainly due to a combination of both steric and electrostatic factors, producing a clash with the paired cytosine O2 atom, as opposed to either bulk or perturbation of purine ring electron density alone.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号