首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Biochemical and electron microscopic analyses of heat-shocked suspension cultures of Peruvian tomato (Lycopersicon peruvianum) revealed that a considerable part of the dominant small heat shock proteins (hsps) with an Mr of approximately 17,000 are structural proteins of newly forming granular aggregates in the cytoplasm (heat shock granules), whose formation strictly depends on heat shock conditions (37 to 40 degrees C) and the presence or simultaneous synthesis of hsps. However, under certain conditions, e.g., in preinduced cultures maintained at 25 degrees C, hsps also accumulate as soluble proteins without concomitant assembly of heat shock granules. Similar heat shock-induced cytoplasmic aggregates were also observed in other cell cultures and heat-shocked tomato leaves and corn coleoptiles.  相似文献   

2.
Heat shock proteins (hsp) in Aurelia identified by one-dimensional SDS-PAGE are of sizes 93,83,70,68,45, and 39 kD, the most rapidly labeled being hsp 70 in all developmental stages. Labeled hsp in the polyp are found mostly in the epidermis; gastrodermal nuclei are also labeled. The minimum temperature for induction of the proteins is about the same (27 degrees to 28 degrees C), regardless of whether polyps have been cultured at 15 degrees or 24 degrees C. Adults and planulae taken from natural water at 28 degrees C do not show accumulation of hsp 70. Induction of strobilation by raising polyps from 15 degrees to 25 degrees C is not associated with appreciable labeling of hsp. Polyps transferred to higher or lower salinity have decreased protein synthesis but do not synthesize stress proteins.  相似文献   

3.
Exposure of chick myotube cultures to a temperature (45 degrees C) higher than their normal growing temperature (37 degrees C) caused extensive synthesis of three major polypeptides of Mr = 25 000, 65 000 and 81 000 referred to as 'heat-shock polypeptides' (hsps). When these cells were allowed to recover from heat-shock treatment at 37 degrees C for 6-8 h, the rate of accumulation of isotope into the 65 000-Mr and 81 000-Mr hsps declined to levels comparable to those in control cultures maintained at 37 degrees C. However, incorporation of isotope in the 25 000-Mr hsp continued at an elevated rate for a longer period than the 65 000-Mr and 81 000-Mr hsps. When heat-shocked cells were allowed to recover at 37 degrees C in the presence of actinomycin D to block new mRNA synthesis, the hsp synthesis as measured by the incorporation of radioactive isotope in these polypeptides continued at levels comparable to those in heat-shocked cells prior to recovery. The block of recovery by actinomycin D was due to the presence of a greater amount of functional hsp mRNAs in the polysomes as compared to untreated controls. The role of competition between the mRNAs for hsps and normal cellular proteins for the translation machinery in regulating protein synthesis during the recovery from heat shock has been discussed.  相似文献   

4.
A single hyperthermic exposure can render cells transiently resistant to subsequent high temperature stresses. Treatment of rat embryonic fibroblasts with cycloheximide for 6 h after a 20-min interval at 45 degrees C inhibits protein synthesis, including heat shock protein (hsp) synthesis, and results in an accumulation of hsp 70 mRNA, but has no effect on subsequent survival responses to 45 degrees C hyperthermia. hsp 70 mRNA levels decreased within 1 h after removal of cycloheximide but then appeared to stabilize during the next 2 h (3 h after drug removal and 9 h after heat shock). hsp 70 mRNA accumulation could be further increased by a second heat shock at 45 degrees C for 20 min 6 h after the first hyperthermic exposure in cycloheximide-treated cells. Both normal protein and hsp synthesis appeared increased during the 6-h interval after hyperthermia in cultures which received two exposures to 45 degrees C for 20 min compared with those which received only one treatment. No increased hsp synthesis was observed in cultures treated with cycloheximide, even though hsp 70 mRNA levels appeared elevated. These data indicate that, although heat shock induces the accumulation of hsp 70 mRNA in both normal and thermotolerant cells, neither general protein synthesis nor hsp synthesis is required during the interval between two hyperthermic stresses for Rat-1 cells to express either thermotolerance (survival resistance) or resistance to heat shock-induced inhibition of protein synthesis.  相似文献   

5.
Heat shock proteins in maize   总被引:27,自引:19,他引:8       下载免费PDF全文
Cooper P  Ho TH 《Plant physiology》1983,71(2):215-222
The pattern of protein synthesis in roots of 3-day-old maize seedlings (Zea mays L.) is rapidly and dramatically altered when the incubation temperature is raised from 25 to 40°C. One-dimensional sodium dodecyl sulfate gels reveal that although synthesis of the proteins observed at 25°C continues at 40°C, a new set of `heat shock proteins' (hsp) is induced within 20 minutes of the temperature transition. The hsp have molecular weights of 87, 85, 79, 78, 77, 72, 70, 27, 22, and 18 kilodaltons. The 10 hsp are visible on autoradiograms but not on stained gels, suggesting that the proteins do not accumulate to any great extent.

The induction of the hsp is transitory. With prolonged high temperature treatment, the synthesis of hsp continues for 4 hours in excised roots and for 8 hours in the roots of intact seedlings before declining sharply. Coincident to the decline in synthesis of the 10 hsp is the gradual increase in intensity of three new polypeptides having molecular weights of 62, 49.5, and 19 kilodaltons. These proteins begin to appear about the time that synthesis of the other 10 hsp becomes maximal.

Shifting the temperature back to 25°C also causes a decline in synthesis of hsp, but this decline occurs more rapidly than that seen during prolonged heat shock. A decrease in hsp synthesis becomes apparent 2 hours after the roots are returned to 25°C.

Shifting the temperature from 25 to 45°C results in a pattern of protein synthesis different from that observed after a shift to 40°C. Normal protein synthesis continues, except four proteins, which are produced in small amounts at lower temperatures, show greatly enhanced synthesis at 45°C. These proteins have apparent molecular weights of 83, 81, 68, and 65 kilodaltons. Also, the 10 hsp listed above are not synthesized. It is suggested that at least two distinct high-temperature responses are present in maize, which may reflect the metabolic changes generated at different elevated temperatures.

  相似文献   

6.
7.
The present study evaluating induction of the major stress proteins in the subphysiological temperature range (25-33 degrees C) shows that none of the agents used could effectively induce the heat shock proteins (hsp) or the glucose related protein grp95 at low temperature. However, grp82 was still induced by some amino acid analogs and by glucose deprivation while certain oxygen-regulated proteins were still induced by hypoxia at 25 degrees C. Analogs were incorporated and protein turnover was increased at low temperature even though most stress proteins were not induced. Synthesis of hsps, but not that of grps, was induced if cultures containing analog-substituted proteins were shifted to 37 degrees C. Temperature dependence of hsp induction by arsenite showed a sharp threshold between 30 degrees C and 33 degrees C. Low temperature inhibition of induction points to the existence of a temperature-dependent mechanism operating within the normal physiological temperature range and may be a useful parameter in evaluating proposed mechanisms of stress protein regulation.  相似文献   

8.
9.
Elevation of the incubation temperature of Xenopus laevis neurulae from 22 to 33-35 degrees C induced the accumulation of heat shock protein (hsp) 70 mRNA (2.7 kilobases (kb)) and a putative hsp 87 mRNA (3.2 kb). While constitutive levels of both hsp mRNAs were detectable in unfertilized eggs and cleavage-stage embryos, heat-induced accumulation was not observed until after the mid-blastula stage. Exposure of Xenopus laevis embryos to other stressors, such as sodium arsenite or ethanol, also induced a developmental stage-dependent accumulation of hsp 70 mRNA. To characterize the effect of temperature on hsp 70 mRNA induction, neurulae were exposed to a range of temperatures (27-37 degrees C) for 1 h. Heat-induced hsp 70 mRNA accumulation was first detectable at 27 degrees C, with relatively greater levels at 30-35 degrees C and lower levels at 37 degrees C. A more complex effect of temperature on hsp 70 mRNA accumulation was observed in a series of time course experiments. While continuous exposure of neurulae to heat shock (27-35 degrees C) induced a transient accumulation of hsp 70 mRNA, the temporal pattern of hsp 70 mRNA accumulation was temperature dependent. Exposure of embryos to 33-35 degrees C induced maximum relative levels of hsp 70 mRNA within 1-1.5 h, while at 30 and 27 degrees C peak hsp 70 mRNA accumulation occurred at 3 and 12 h, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Rat embryonic fibroblasts growing exponentially at either 35, 37, or 39 degrees C were exposed to 42 degrees C for times up to 6 hr. Cell survival was unaffected by this heat shock in cultures growing at 39 degrees C but survival was decreased in a temperature dependent manner in cells growing at 37 or 35 degrees C. Exposure to 42 degrees C of cells previously adapted to 35 or 37 degrees C resulted in the induction of heat shock proteins (hsps) with apparent molecular weights of 68,000 (hsp 68), 70,000 (hsp 70), and 89,000 (hsp 89); cells previously adapted to 39 degrees C expressed all hsps except hsp 68. Inasmuch as the synthesis of certain hsps may function to protect cells from thermal damage, these data indicate that hsp 68 may not be required for this adaptation-related thermotolerant survival response. Hsp 68 may only be expressed in cells destined to die.  相似文献   

11.
12.
The dynamic state of heat shock proteins in chicken embryo fibroblasts   总被引:22,自引:7,他引:15       下载免费PDF全文
Subcellular fractionation and immunofluorescence microscopy have been used to study the intracellular distributions of the major heat shock proteins, hsp 89, hsp 70, and hsp 24, in chicken embryo fibroblasts stressed by heat shock, allowed to recover and then restressed. Hsp 89 was localized primarily to the cytoplasm except during the restress when a portion of this protein concentrated in the nuclear region. Under all conditions, hsp 89 was readily extracted from cells by detergent. During stress and restress, significant amounts of hsp 70 moved to the nucleus and became resistant to detergent extraction. Some of this hsp 70 was released from the insoluble form in an ATP-dependent reaction. Hsp 24 was confined to the cytoplasm and, during restress, aggregated to detergent-insoluble perinuclear phase-dense granules. These granules dissociated during recovery and hsp 24 could be solubilized by detergent. The nuclear hsps reappeared in the cytoplasm in cells allowed to recover at normal temperatures. Sodium arsenite also induces hsps and their distributions were similar to that observed after a heat shock, except for hsp 89, which remained cytoplasmic. We also examined by immunofluorescence the cytoskeletal systems of chicken embryo fibroblasts subjected to heat shock and found no gross morphological changes in cytoplasmic microfilaments or microtubules. However, the intermediate filament network was very sensitive and collapsed around the nucleus very shortly after a heat shock. The normal intermediate filament morphology reformed when cells were allowed to recover from the stress. Inclusion of actinomycin D during the heat shock--a condition that prevents synthesis of the hsps--did not affect the intermediate filament collapse, but recovery of the normal morphology did not occur. We suggest that an hsp(s) may aid in the formation of the intermediate filament network after stress.  相似文献   

13.
Synthesis of about 30 acidic and 18 basic heat-shock proteins (hsps) is induced in suspension cultures of tomato (Lycopersicon peruvianum) if subjected to supraoptimal temperature conditions (35-40 degrees C). A characteristic aspect of the plant heat-shock response is the formation of cytoplasmic granular aggregates, heat-shock granules, containing distinct heat-shock proteins as major structural components and, in addition, several hitherto undetected minor acidic and basic heat-shock proteins. Structural binding of heat-shock proteins, i.e. assembly of heat-shock granules, is dependent on the persistance of supraoptimal temperature conditions. Despite the ongoing synthesis also at 25 degrees C, e.g. in pulse heat-shocked cultures, these proteins are accumulated exclusively in soluble form. Individual heat-shock proteins are characterized by their kinetics of synthesis and are classified by their compartmentation behaviour into class A proteins (exclusively found in soluble form, e.g. hsps 95 and 80), class B proteins (5-10% bound to heat-shock granules, e.g. hsps 70, 68), class C proteins (30-80% bound to heat-shock granules, e.g. hsps 21, 17, 15) and class D proteins, which are minor heat-shock proteins only detected in structure-bound form. Major representatives are modified proteins, i.e. hsps 95, 80, 70 and 68 are phosphorylated and hsps 80, 74, 70 and 17 are methylated proteins (numbers 70, 80 etc. refer to 10(-3) Mr). Under heat-shock conditions synthesis of the proteins detected in control cells (25 degrees C proteins) exhibits two patterns. There are proteins with continued and proteins with discontinued synthesis. Synthesis of most of the latter proteins is resumed very rapidly after shift-down to 25 degrees C, even in the presence of actinomycin D. We conclude that reversible segregation of distinct mRNA species from the translation apparatus contributes to the heat-shock-specific pattern of protein synthesis in plants also.  相似文献   

14.
One of the major mammalian heat shock proteins, hsp85, aggregates extensively when heated in the presence of non-ionic detergents (J Cell. Physiol. 140: 601-607, 1989). The present study used intrinsic fluorescence and susceptibility to tryptic proteolysis to probe hsp85 conformation within the physiological and heat shock temperature ranges. Fluorescence intensity decreased and the emission spectrum was red-shifted (2.5 nm) as hsp85 was heated from 15 degrees to 50 degrees C. Upon heating in the absence of detergent, the red shift, monitored by the ratio of fluorescence emission at 330 nm to that at 350 nm, began at 38 degrees-45 degrees C with a transition midpoint at 45 degrees-50 degrees C, depending on the rate of temperature increase. This transition was masked by 1% n-octyl-O-glucoside - a detergent previously shown to promote aggregation. The spectral changes were not reversible upon cooling to 15 degrees C. Susceptibility to proteolysis in the absence of detergent, measured by the degradation of characteristic large fragments, increased sharply between 40 degrees C and 45 degrees C. These findings suggest that hsp85 undergoes a major conformational change within the range of temperatures known to induce hsp synthesis. This change is consistent with partial unfolding which exposes additional sites to the aqueous environment and influences detergent binding.  相似文献   

15.
The analysis of proteins synthesized in rat thymocytes and mouse teratocarcinoma PCC-4 Aza 1 and myeloma Sp2/0 cells after 1 h of treatment at 42 or 44 degrees C was carried out. Shock at 42 degrees C reduced the total synthetic rate of proteins in all three cell lines and induced "classical" heat-shock protein with a mass of 70 kDa (hsp 70). Heat shock at 44 degrees C resulted in almost complete inhibition of protein synthesis; only a small amount of hsp 70 was synthesized. Meanwhile a new 48-kDa polypeptide (pI = 7.5) was found in the cells exposed to severe heat shock. This protein was compared by peptide mapping with other known polypeptides of the same size: heat-shock protein from chicken embryo cells and mitogen-stimulated polypeptide from human lymphoid cells. The peptide maps were not identical. It was also shown that after a shock at 44 degrees C teratocarcinoma cells were able to accumulate anomalous amounts of hsp 70 despite hsp 70 synthesis inhibition. The data show that reaction of various cells to extreme heat shock depends heavily on cell type.  相似文献   

16.
We have previously reported that Drosophila Kc cells require glutamine for maximal expression of heat shock proteins in stressed conditions (Sanders and Kon: J. Cell. Physiol. 146:180-190, 1991). The mechanism of this effect has been investigated by comparing the metabolic utilization of glutamine in conditions which support hsp expression with that of glutamate in conditions where up to 100-fold less hsp is synthesized. This comparison showed that free ammonia was generated by cells incubated in the presence of glutamine in 37 degrees C (heat shock) conditions, but not at 25 degrees C, and not in the presence of glutamate in either normal or heat shock conditions. There was no difference in the amount of [14C]O2 generated from either [14C]-labeled amino acid in the tricarboxylic acid cycle, but three- to four-fold more alanine was synthesized in cells incubated in glutamine than in glutamate. Treating the cells with aminotransferase inhibitors to artificially increase NH3 release raised hsp expression in the presence of glutamate to maximal levels characteristic of glutamine. This potentiation correlated with inhibition of alanine aminotransferase. Since only NH3 production correlated with hsp expression in heat shock conditions in the presence of glutamine, and NH3 addition to glutamate also resulted in maximal hsp expression, we measured glutamine production in glutamate plus NH3 and observed net glutamine synthesis. The supposition that glutamine itself is responsible for the regulatory changes supporting maximal hsp expression was supported by the finding that the glutamine analog, 6-diazo-5-oxo-L-norleucine (DON), mimicked the effects of glutamine. We conclude that glutamine imposes regulatory changes which alter nitrogen metabolism and support hsp expression in Kc cells.  相似文献   

17.
Using affinity-purified antibodies, the 84,000 dalton heat-shock protein (hsp) has been localized in mouse N2A neuroblastoma cells by immunocytochemical techniques. Immunofluorescence microscopy showed that hsp84 was present both in the cytoplasm and in the nucleus. The nucleoli were found to be unlabelled. Immunogold labelling on ultrathin cryosections revealed that hsp84 was evenly distributed throughout the entire cytoplasm. No preferential association of hsp84 with the plasma membrane or with membranes from organelles was observed. In the nucleus the hsp84 was present in both the euchromatin and heterochromatin. In the nucleolus only the fibrillar part was labelled and virtually no gold particles were observed in the granular part. A long-term hyperthermic treatment of 3 h at 42.5 degrees C was found to induce an accumulation of hsp84 inside the nucleus. No alterations in hsp84 distribution were observed during a treatment of the cells with 75 microM sodium arsenite for 3 h. Drastic alterations were observed in the nucleoli after both stress treatments. The granular part had totally disappeared and only remnants of the fibrillar part which contained hsp84, were found. Besides the nuclear accumulations of hsp84 during heat shock, no additional changes in the hsp84 location in stressed cells were observed. During a recovery from the heat shock by replacing the cells at 37 degrees C, a decrease in the nuclear location of hsp84 was observed, indicating the reversibility of this process. The significance of these results for the role of hsp84 in normal and in stressed cells is discussed.  相似文献   

18.
The complex molecular response of cells to sudden temperature changes is a well-characterized phenomenon. Although it is clear that the induction of heat shock proteins provides protection from heat in all of the organisms so far tested, very little is known about the role that this set of proteins plays in cellular homeostasis. Recently, putative roles for hsp60 and hsp70-like proteins have been proposed in Saccharomyces cerevisiae. hsp70-like proteins have been shown to be necessary for translocation of precursor polypeptides into mitochondria and endoplasmic reticulum, while hsp60 is required for the assembly of precursor polypeptides into oligomeric complexes following incorporation into the mitochondrial matrix. In this paper, we report that a brief temperature shock (44 degrees C) impairs coupling of oxidative phosphorylation in S. cerevisiae as measured indirectly by the Cl-CCP/oligomycin assay. Furthermore, at high temperature oligomycin stimulates rather than inhibits oxygen uptake under nonthermotolerant conditions. Pretreatment of cells for a short period of time at 37 degrees C, prior to exposure to higher temperatures rescues the capacity to maintain coupling between oxidative phosphorylation and electron transport. Inhibition of cytoplasmic RNA or protein synthesis during heat shock prevents the protection of this mitochondrial activity. We propose that one of the roles of the induction of heat shock proteins (or related activities) is to protect mitochondrial ATPase activity under conditions of further increase in temperature.  相似文献   

19.
Effects of low culture temperature on the induction of heat shock proteins in FM3A cells by a heat shock and on the thermal sensitivity of the cells were examined. FM3A cells maintained at 33 degrees C could not induce hsp70 during continuous heating or after a short heat shock at either 39, 42, or 45 degrees C, although FM3A cells maintained at a normal culture temperature of 37 degrees C can induce the synthesis of hsp70. Furthermore, the cells maintained at 33 degrees C were more sensitive to the subsequent heat shock than the cells maintained at 37 degrees C. Thus, the culture temperature of the mammalian cells may be an important factor for the induction of hsp70, and hsp70 may play an important role to protect or repair the thermal damage of cells.  相似文献   

20.
Aedes albopictus (clone C6/36) cells, which normally grow at 28 degrees C, were maintained at a supraoptimal temperature of 37 degrees C. The effect of continuous heat stress (37 degrees C) on cell growth was analyzed as were the modifications occurring with protein synthesis during short- and long-term heat stress. We observed that cells in lag or exponential growth phase, present inhibition of cell growth, and cells in the lag phase showed more sensitivity to death than cells growing exponentially. During the first hour of exposing the cells to 37 degrees C, they synthesized two heat shock proteins (hsps) of 82 kd and 70 kd, respectively, concomitant with inhibition of normally produced proteins at control temperature (28 degrees C). However, for incubations longer than 2 hr at 37 degrees C, a shift to the normal pattern of protein synthesis occurred. During these transitions, two other hsps of 76 kd and 90 kd were synthesized. Pulse chase experiments showed that the 70-kd hsp is stable at least for 18 hr, when the cells are returned to 28 degrees C. However, if cells were incubated at 37 degrees C, the 70-kd hsp is stable for at least 48 hr. The 70-kd hsp was localized in the cytoplasmic and in the nuclear compartment. Our results indicate a possible role of hsp 70-kd protein in the regulation of cell proliferation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号