首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 37 毫秒
1.
Type III collagen binding protein (TIIICBP) was previously described as a platelet membrane protein that recognizes the KOGEOGPK peptide sequence within type III collagen. In order to better characterize this protein, we performed different approaches including mass spectrometry sequencing and functional experiments. This study leads to identify high biochemical and functional similarities between TIIICBP and kindlin-3, a member of a family of focal adhesion proteins. Indeed, mass spectrometry surveys indicated that TIIICBP contains several peptides identical to kindlin-3, covering 41% of the amino acid sequence. Polyclonal antibodies raised against a kindlin-3 specific N-terminal sequence, recognized and immunoprecipitated TIIICBP from platelet lysates. Electron microscopy and flow cytometry experiments showed that kindlin-3, as well as TIIICBP, were present associated to platelet membrane and a translocation of cytosolic kindlin-3 to the platelet membrane was observed after platelet activation. Similarly to anti-TIIICBP antibodies and the KOGEOGPK peptide, anti-kindlin-3 antibodies inhibited platelet interactions with type III collagen under flow conditions and slowed down platelet aggregation induced by glycoprotein VI agonists; e.g. collagen-related peptides and convulxin. In addition, the anti-kindlin-3 antibody inhibited platelet aggregation induced by low - but not high - doses of ADP or thrombin which depends on α(IIb)β(3) integrin function. In conclusion, our results show that the peptides identified by mass spectrometry from purified TIIICBP correspond to the kindlin-3 protein and demonstrate biochemical and functional similarities between TIIICBP and kindlin-3, strengthening a key role for TIIICBP/kindlin-3 in platelet interactions with collagen by cooperating with glycoprotein VI activation and integrin clustering in focal adhesion complexes.  相似文献   

2.
Platelet adhesion to sites of vascular injury is initiated by the binding of the platelet glycoprotein (GP) Ib-V-IX complex to matrix-bound von Willebrand factor (vWf). This receptor-ligand interaction is characterized by a rapid on-off rate that enables efficient platelet tethering and rolling under conditions of rapid blood flow. We demonstrate here that platelets adhering to immobilized vWf under flow conditions undergo rapid morphological conversion from flat discs to spiny spheres during surface translocation. Studies of Glanzmann thrombasthenic platelets (lacking integrin alpha(IIb)beta(3)) and Chinese hamster ovary (CHO) cells transfected with GPIb/IX (CHO-Ib/IX) confirmed that vWf binding to GPIb/IX was sufficient to induce actin polymerization and cytoskeletal reorganization independent of integrin alpha(IIb)beta(3). vWf-induced cytoskeletal reorganization occurred independently of several well characterized signaling processes linked to platelet activation, including calcium influx, prostaglandin metabolism, protein tyrosine phosphorylation, activation of protein kinase C or phosphatidylinositol 3-kinase but was critically dependent on the mobilization of intracellular calcium. Studies of Oregon Green 488 1, 2-bis(o-amino-5-fluorophenoxy)ethane-N,N,N',N-tetraacetic acid tetraacetoxymethyl ester-loaded platelets and CHO-Ib/IX cells demonstrated that these cells mobilize intracellular calcium in a shear-dependent manner during surface translocation on vWf. Taken together, these studies suggest that the vWf-GPIb interaction stimulates actin polymerization and cytoskeletal reorganization in rolling platelets via a shear-sensitive signaling pathway linked to intracellular calcium mobilization.  相似文献   

3.
The small GTPase RhoA modulates the adhesive nature of many cell types; however, despite high levels of expression in platelets, there is currently limited evidence for an important role for this small GTPase in regulating platelet adhesion processes. In this study, we have examined the role of RhoA in regulating the adhesive function of the major platelet integrin, alpha(IIb)beta(3). Our studies demonstrate that activation of RhoA occurs as a general feature of platelet activation in response to soluble agonists (thrombin, ADP, collagen), immobilized matrices (von Willebrand factor (vWf), fibrinogen) and high shear stress. Blocking the ligand binding function of integrin alpha(IIb)beta(3), by pretreating platelets with c7E3 Fab, demonstrated the existence of integrin alpha(IIb)beta(3)-dependent and -independent mechanisms regulating RhoA activation. Inhibition of RhoA (C3 exoenzyme) or its downstream effector Rho kinase had no effect on integrin alpha(IIb)beta(3) activation induced by soluble agonists or adhesive substrates, however, both inhibitors reduced shear-dependent platelet adhesion on immobilized vWf and shear-induced platelet aggregation in suspension. Detailed analysis of the sequential adhesive steps required for stable platelet adhesion on a vWf matrix under shear conditions revealed that RhoA did not regulate platelet tethering to vWf or the initial formation of integrin alpha(IIb)beta(3) adhesion contacts but played a major role in sustaining stable platelet-matrix interactions. These studies define a critical role for RhoA in regulating the stability of integrin alpha(IIb)beta(3) adhesion contacts under conditions of high shear stress.  相似文献   

4.
Platelet interaction with type III collagen is mediated by several platelet receptors that recognize specific sequences in collagen. We previously described an octapeptide KP*GEP*GPK within the alpha(1)III-CB4 fragment that binds to platelets and specifically inhibits platelet aggregation induced by type III collagen. In this study, we demonstrated that the octapeptide prevented platelet contact and spreading on type III collagen and subendothelium under static and flow conditions. Platelets adhered to the immobilized octapeptide, and anti-bodies directed against other platelet collagen receptors (glycoprotein (GP) Ia/IIa, GP IV, p65, p47) did not impair this adhesion. The platelet octapeptide receptor was identified by ligand blotting as a protein doublet with molecular masses of 68 and 72 kDa and does not correspond to any other already known platelet collagen receptors (GP Ia, GP IV GP VI, and p65). Our results indicate that a specific type III collagen receptor, expressed on the platelet surface, is involved in the first stages of platelet type III collagen interaction.  相似文献   

5.
Adhesion of platelets to sites of vascular injury is critical for hemostasis and thrombosis and is dependent on the binding of the vascular adhesive protein von Willebrand factor (vWf) to the glycoprotein (GP) Ib-V-IX complex on the platelet surface. A unique but poorly defined characteristic of this receptor/ligand interaction is its ability to support platelet adhesion under conditions of high shear stress. To examine the structural domains of the GPIb-V-IX complex involved in mediating cell adhesion under flow, we have expressed partial (GPIb-IX), complete (GPIb-V-IX), and mutant (GPIbalpha cytoplasmic tail mutants) receptor complexes on the surface of Chinese hamster ovary (CHO) cells and examined their ability to adhere to a vWf matrix in flow-based adhesion assays. Our studies demonstrate that the partial receptor complex (GPIb-IX) supports CHO cell tethering and rolling on a bovine or human vWf matrix under flow. The adhesion was specifically inhibited by an anti-GPIbalpha blocking antibody (AK2) and was not observed with CHO cells expressing GPIbbeta and GPIX alone. The velocity of rolling was dependent on the level of shear stress, receptor density, and matrix concentration and was not altered by the presence of GPV. In contrast to selectins, which mediate cell rolling under conditions of low shear (20-200 s-1), GPIb-IX was able to support cell rolling at both venous (150 s-1) and arterial (1500-10,500 s-1) shear rates. Studies with a mutant GPIbalpha receptor subunit lacking the binding domain for actin-binding protein demonstrated that the association of the receptor complex with the membrane skeleton is not essential for cell tethering or rolling under low shear conditions, but is critical for maintaining adhesion at high shear rates (3000-6000 s-1). These studies demonstrate that the GPIb-IX complex is sufficient to mediate cell rolling on a vWf matrix at both venous and arterial levels of shear independent of other platelet adhesion receptors. Furthermore, our results suggest that the association between GPIbalpha and actin-binding protein plays an important role in enabling cells to remain tethered to a vWf matrix under conditions of high shear stress.  相似文献   

6.

Background

Among the several challenges faced by bloodsucking arthropods, the vertebrate hemostatic response against blood loss represents an important barrier to efficient blood feeding. Here we report the first inhibitor of collagen-induced platelet aggregation derived from the salivary glands of a black fly (Simulium nigrimanum), named Simplagrin.

Methods and Findings

Simplagrin was expressed in mammalian cells and purified by affinity-and size-exclusion chromatography. Light-scattering studies showed that Simplagrin has an elongated monomeric form with a hydrodynamic radius of 5.6 nm. Simplagrin binds to collagen (type I-VI) with high affinity (2–15 nM), and this interaction does not involve any significant conformational change as determined by circular dichroism spectroscopy. Simplagrin-collagen interaction is both entropically and enthalpically driven with a large negative ΔG, indicating that this interaction is favorable and occurs spontaneously. Simplagrin specifically inhibits von Willebrand factor interaction with collagen type III and completely blocks platelet adhesion to collagen under flow conditions at high shear rates; however, Simplagrin failed to block glycoprotein VI and Iα2β1 interaction to collagen. Simplagrin binds to RGQOGVMGF peptide with an affinity (KD 11 nM) similar to that of Simplagrin for collagen. Furthermore, Simplagrin prevents laser-induced carotid thrombus formation in vivo without significant bleeding in mice and could be useful as an antithrombotic agent in thrombosis related disease.

Conclusion

Our results support the orthology of the Aegyptin clade in bloodsucking Nematocera and the hypothesis of a faster evolutionary rate of salivary function of proteins from blood feeding arthropods.  相似文献   

7.
von Willebrand factor (vWf) which serves as a necessary factor for platelet adhesion to damaged vascular subendothelium can bind to the platelet surface via two distinct receptors. Ristocetin promotes the binding of vWf to platelet membrane glycoprotein lb, whereas platelet activation by thrombin supports binding to the glycoprotein IIb/IIIa complex. Platelet adhesion to vWf substrates mediated by these two mechanisms has been compared. Both mechanisms supported similar rates of adhesion to the substrates. Whereas adhesion via the ristocetin-dependent mechanism did not require divalent cations, adhesion mediated by the thrombin-dependent mechanism required the presence of divalent cations. Modification of vWf amino groups markedly impaired the ability of the protein to support ristocetin-dependent adhesion but did not alter its ability to support thrombin-enhanced adhesion. Reduction and carboxymethylation nearly abolished the ability of vWf to support adhesion via the ristocetin-dependent mechanism, but did not substantially impair its ability to support thrombin-enhanced adhesion. Short synthetic peptides containing the sequence Arg-Gly-Asp-Ser effectively inhibited thrombin-dependent platelet adhesion to vWf substrates but had no effect on ristocetin-dependent adhesion. Substrates composed of synthetic peptides containing the Arg-Gly-Asp-Ser sequence supported thrombin-dependent adhesion but did not support ristocetin-dependent adhesion. Scanning electron microscopic examination revealed that platelets adherent via the ristocetin-dependent mechanism almost uniformly adopted a flattened and fully spread appearance. In contrast, the thrombin-enhanced mechanism of adhesion supported only a limited degree of platelet spreading on the vWf substrate.  相似文献   

8.
Platelet adhesion on and activation by components of the extracellular matrix are crucial to arrest post-traumatic bleeding, but can also harm tissue by occluding diseased vessels. Integrin alpha2beta1 is thought to be essential for platelet adhesion to subendothelial collagens, facilitating subsequent interactions with the activating platelet collagen receptor, glycoprotein VI (GPVI). Here we show that Cre/loxP-mediated loss of beta1 integrin on platelets has no significant effect on the bleeding time in mice. Aggregation of beta1-null platelets to native fibrillar collagen is delayed, but not reduced, whereas aggregation to enzymatically digested soluble collagen is abolished. Furthermore, beta1-null platelets adhere to fibrillar, but not soluble collagen under static as well as low (150 s(-1)) and high (1000 s(-1)) shear flow conditions, probably through binding of alphaIIbbeta3 to von Willebrand factor. On the other hand, we show that platelets lacking GPVI can not activate integrins and consequently fail to adhere to and aggregate on fibrillar as well as soluble collagen. These data show that GPVI plays the central role in platelet-collagen interactions by activating different adhesive receptors, including alpha2beta1 integrin, which strengthens adhesion without being essential.  相似文献   

9.
The involvement of the mitogen-activated protein kinase c-Jun NH2-terminal kinase-1 (JNK1) has never been investigated in hemostasis and thrombosis. Using two JNK inhibitors (SP600125 and 6o), we have demonstrated that JNK1 is involved in collagen-induced platelet aggregation dependent on ADP. In these conditions, JNK1 activation requires the coordinated signaling pathways of collagen receptors (alpha2beta1 and glycoprotein (GP)VI) and ADP. In contrast, JNK1 is not required for platelet adhesion on a collagen matrix in static or blood flow conditions (300-1500 s(-1)) involving collagen receptors (alpha2beta1 and GPVI). Importantly, at 1500 s(-1), JNK1 acts on thrombus formation on a collagen matrix dependent on GPIb-von Willebrand factor (vWF) interaction but not ADP receptor activation. This is confirmed by the involvement of JNK1 in shear-induced platelet aggregation at 4000 s(-1). We also provide evidence during rolling and adhesion of platelets to vWF that platelet GPIb-vWF interaction triggers alphaIIbbeta3 activation in a JNK1-dependent manner. This was confirmed with a Glanzmann thrombastenic patient lacking alphaIIbbeta3. Finally, in vivo, JNK1 is involved in arterial but not in venular thrombosis in mice. Overall, our in vitro studies define a new role of JNK1 in thrombus formation in flowing blood that is relevant to thrombus development in vivo.  相似文献   

10.
To facilitate feeding, certain hematophagous invertebrates possess inhibitors of collagen-induced platelet aggregation in their saliva. However, their mechanisms of action have not been fully elucidated. Here, we describe two major salivary proteins, triplatin-1 and -2, from the assassin bug, Triatoma infestans, which inhibited platelet aggregation induced by collagen but not by other agents including ADP, arachidonic acid, U46619 and thrombin. Furthermore, these triplatins also inhibited platelet aggregation induced by collagen-related peptide, a specific agonist of the major collagen-signaling receptor glycoprotein (GP)VI. Moreover, triplatin-1 inhibited Fc receptor gamma-chain phosphorylation induced by collagen, which is the first step of GPVI-mediated signaling. These results strongly suggest that triplatins target GPVI and inhibit signal transduction necessary for platelet activation by collagen. This is the first report on the mechanism of action of collagen-induced platelet aggregation inhibitors from hematophagus invertebrates.  相似文献   

11.
Although the role of collagen in thrombosis has been extensively investigated, the contribution of other extracellular matrices is still unclear. We have recently reported that laminin stimulates platelet spreading through integrin alpha(6)beta(1)-dependent activation of the collagen receptor glycoprotein (GP) VI under static condition. Under physiological high and low shear conditions, platelets adhered to laminin, and this was strongly inhibited by an antibody that blocks association between GPIb-IX-V and von Willebrand factor (VWF). Moreover, platelets of type III von Willebrand disease or Bernard-Soulier syndrome adhered to laminin at a low shear condition but not at a high shear condition. The specific binding of laminin to VWF was confirmed by surface plasmin resonance spectroscopy (BIAcore). These findings suggest that laminin supports platelet adhesion depending on the interaction of VWF and GPIb-IX-V under pathophysiological high shear flow. This mechanism is similar to that of collagen. We propose that integrins, GPVI, GPIb-IX-V, and VWF represent a general paradigm for the interaction between platelets and subendothelial matrices.  相似文献   

12.
von Willebrand factor (vWf) is a multimeric adhesive glycoprotein that serves as a carrier for factor VIII in plasma. Although each vWf subunit displays a high affinity binding site for factor VIII in vitro, in plasma, only 2% of the vWf sites for factor VIII are occupied. We investigated whether interaction of plasma proteins with vWf or adhesion of vWf to collagen may alter the affinity or availability of factor VIII-binding sites on vWf. When vWf was immobilized on agarose-linked monoclonal antibody, factor VIII bound to vWf with high affinity, and neither the affinity nor binding site availability was influenced by the presence of 50% plasma. Therefore, plasma proteins do not alter the affinity or availability of factor VIII-binding sites. In contrast, when vWf was immobilized on agarose-linked collagen, its affinity for factor VIII was reduced 4-fold, with KD increasing from 0.9 to 3.8 nM. However, one factor VIII-binding site remained available on each vWf subunit. A comparable reduction in affinity for factor VIII was observed when vWf was a constituent of the subendothelial cell matrix and when it was bound to purified type VI collagen. In parallel with the decreased affinity for factor VIII, collagen-bound vWf displayed a 6-fold lower affinity for monoclonal antibody W5-6A, with an epitope composed of residues 78-96 within the factor VIII-binding motif of vWf. We conclude that collagen induces a conformational change within the factor VIII-binding motif of vWf that lowers the affinity for factor VIII.  相似文献   

13.
Subendothelial collagen plays an important role, via both direct and indirect mechanisms, in the initiation of thrombus formation at sites of vascular injury. Collagen binds plasma von Willebrand factor, which mediates platelet recruitment to collagen under high shear. Subsequently, the direct binding of the platelet receptors glycoprotein VI and alpha2beta1 to collagen is critical for platelet activation and stable adhesion. Leeches, have evolved a number of inhibitors directed towards platelet-collagen interactions so as to prevent hemostasis in the host during hematophagy. In this article, we describe the molecular mechanisms underlying the ability of the leech product saratin to inhibit platelet binding to collagen. In the presence of inhibitors of ADP and thromboxane A2, both saratin and 6F1, a blocking alpha2beta1 mAb, abrogated platelet adhesion to fibrillar and soluble collagen. Additionally, saratin eliminated alpha2beta1-dependent platelet adhesion to soluble collagen in the presence of an Src kinase inhibitor. Moreover, saratin prevented platelet-rich plasma adhesion to fibrillar collagen, a process dependent upon both alpha2beta1 and von Willebrand factor binding to collagen. Furthermore, saratin specifically inhibited the binding of the alpha2 integrin subunit I domain to collagen, and prevented platelet adhesion to collagen under flow to the same extent as observed in the presence of a combination of mAbs to glycoprotein Ib and alpha2beta1. These results demonstrate that saratin interferes with integrin alpha2beta1 binding to collagen in addition to inhibiting von Willebrand factor-collagen binding, presumably by binding to an overlapping epitope on collagen. This has significant implications for the use of saratin as a tool to inhibit platelet-collagen interactions.  相似文献   

14.
Collagen-related peptide is a selective agonist for the platelet collagen receptor Glycoprotein VI. The triple helical peptide contains ten GPO triplets/strand (single letter amino acid nomenclature, where O is hydroxyproline) and so over-represents GPO compared with native collagen sequence. To investigate the ability of Glycoprotein VI to recognize GPO triplets in a setting more representative of the collagens, we synthesized a set of triple helical peptides containing fewer GPO triplets, varying their number and spacing within an inert (GPP)n backbone. The adhesion of recombinant human Glycoprotein VI ectodo-main, like that of human platelets, to these peptides increased with their GPO content, and platelet adhesion was abolished by the specific anti-Glycoprotein VI-blocking antibody, 10B12. Platelet aggregation and protein tyrosine phosphorylation were induced only by cross-linked peptides and only those that contained two or more GPO triplets. Such peptides were less potent than cross-linked collagen-related peptide. Our data suggest that both the sequences GPOGPO and GPO.........GPO represent functional Glycoprotein VI recognition motifs within collagen. Furthermore, we propose that the (GPO)4 motif can support simultaneous binding of two glycoprotein VI molecules, in either a parallel or anti-parallel stacking arrangement, which could play an important role in activation of signaling.  相似文献   

15.
We have isolated and characterized EMS16, a potent and selective inhibitor of the alpha2beta1 integrin, from Echis multisquamatus venom. It belongs to the family of C-lectin type of proteins (CLPs), and its amino acid sequence is homologous with other members of this protein family occurring in snake venoms. EMS16 (M(r) approximately 33K) is a heterodimer composed of two distinct subunits linked by S-S bonds. K562 cells transfected with alpha2 integrin selectively adhere to immobilized EMS16, but not to two other snake venom-derived CLPs, echicetin and alboaggregin B. EMS16 inhibits adhesion of alpha2beta1-expressing cells to immobilized collagen I at picomolar concentrations, and the platelet/collagen I interaction in solution at nanomolar concentrations. EMS16 inhibits binding of isolated, recombinant I domain of alpha2 integrin to collagen in an ELISA assay, but not the interaction of isolated I domain of alpha1 integrin with collagen IV. Studies with monoclonal antibodies suggested that EMS16 binds to the alpha2 subunit of the integrin. EMS16 inhibits collagen-induced platelet aggregation, but has no effect on aggregation induced by other agonists such as ADP, thromboxane analogue (U46619), TRAP, or convulxin. EMS16 also inhibits collagen-induced, but not convulxin-induced, platelet cytosolic Ca(2+) mobilization. In addition, EMS16 inhibits HUVEC migration in collagen I gel. In conclusion, we report a new, potent viper venom-derived inhibitor of alpha2beta1 integrin, which does not belong to the disintegrin family.  相似文献   

16.
Collagen is a potent adhesive substrate for cells, an event essentially mediated by the integrins alpha 1 beta 1 and alpha 2 beta 1. Collagen fibrils also bind to the integrin alpha 2 beta 1 and the platelet receptor glycoprotein VI to activate and aggregate platelets. The distinct triple helical recognition motifs for these receptors, GXOGER and (GPO)n, respectively, all contain hydroxyproline. Using unhydroxylated collagen I produced in transgenic plants, we investigated the role of hydroxyproline in the receptor-binding properties of collagen. We show that alpha 2 beta 1 but not alpha 1 beta 1 mediates cell adhesion to unhydroxylated collagen. Soluble recombinant alpha 1 beta 1 binding to unhydroxylated collagen is considerably reduced compared with bovine collagens, but binding can be restored by prolyl hydroxylation of recombinant collagen. We also show that platelets use alpha 2 beta 1 to adhere to the unhydroxylated recombinant molecules, but the adhesion is weaker than on fully hydroxylated collagen, and the unhydroxylated collagen fibrils fail to aggregate platelets. Prolyl hydroxylation is thus required for binding of collagen to platelet glycoprotein VI and to cells by alpha 1 beta 1. These observations give new insights into the molecular basis of collagen-receptor interactions and offer new selective applications for the recombinant unhydroxylated collagen I.  相似文献   

17.
This study investigates three aspects of the adhesive interaction operating between platelet glycoprotein Ib/IX and integrin alpha(IIb)beta(3). These include the following: 1) examining the sufficiency of GPIb/IX and integrin alpha(IIb)beta(3) to mediate irreversible cell adhesion on immobilized von Willebrand factor (vWf) under flow; 2) the ability of the vWf-GPIb interaction to induce integrin alpha(IIb)beta(3) activation independent of endogenous platelet stimuli; and 3) the identification of key second messengers linking the vWf-GPIb/IX interaction to integrin alpha(IIb)beta(3) activation. By using Chinese hamster ovary cells transfected with GPIb/IX and integrin alpha(IIb)beta(3), we demonstrate that these receptors are both necessary and sufficient to mediate irreversible cell adhesion under flow, wherein GPIb/IX mediates cell tethering and rolling on immobilized vWf, and integrin alpha(IIb)beta(3) mediates cell arrest. Moreover, we demonstrate direct signaling between GPIb/IX and integrin alpha(IIb)beta(3). Studies on human platelets demonstrated that vWf binding to GPIb/IX is able to induce integrin alpha(IIb)beta(3) activation independent of endogenous platelet stimuli under both static and physiological flow conditions (150-1800 s(-)(1)). Analysis of the key second messengers linking the vWf-GPIb interaction to integrin alpha(IIb)beta(3) activation demonstrated that the first step in the activation process involves calcium release from internal stores, whereas transmembrane calcium influx is a secondary event potentiating integrin alpha(IIb)beta(3) activation.  相似文献   

18.
Platelet adhesion receptors and (patho)physiological thrombus formation   总被引:6,自引:0,他引:6  
In thrombus formation associated with hemostasis or thrombotic disease, blood platelets first undergo a rapid transition from a circulating state to an adherent state, followed by activation and aggregation. Under flow conditions in the bloodstream, this process potentially involves platelet-platelet, platelet-endothelium, platelet-subendothelial matrix, and platelet-leukocyte interactions. Specific adhesion receptors on platelets mediate these interactions, by engaging counter-receptors on other cells, or noncellular ligands in the plasma or matrix. The glycoprotein (GP) Ib-IX-V complex on platelets initiates adhesion at high shear stress by binding the adhesive ligand, von Willebrand Factor (vWF). GP Ib-IX-V may also mediate platelet-endothelium or platelet-leukocyte adhesion, by recognition of P-selectin or Mac-1, respectively. Other membrane glycoproteins, such as the collagen receptor GP VI, may trigger platelet activation at low shear rates. Engagement of GP Ib-IX-V or GP VI leads ultimately to platelet aggregation mediated by the integrin, alphaIIbbeta3 (GP IIb-IIIa). This review will focus on recent advances in understanding structure-activity relationships of GP Ib-IX-V, its role in initiating thrombus formation, and its emerging relationships with other vascular cell adhesion receptors.  相似文献   

19.
Glycoprotein VI (GPVI) is a platelet-specific glycoprotein that has been indicated to react with collagen and activate platelets. Its structure was recently identified by cDNA cloning (Clemetson, J. M., Polgar, J., Magnenat, E., Wells, T. N., and Clemetson, K. J. (1999) J. Biol. Chem. 274, 29019-29024). However, the mechanism of the interaction between collagen and GPVI has not been analyzed in detail because both collagen and GPVI are insoluble molecules. In this study, we expressed the extracellular domain of GPVI as soluble forms as follows: the monomeric form (GPVIex) and the dimeric form of GPVI fused with the human immunoglobulin Fc domain (GPVI-Fc(2)). Purified GPVIex strongly inhibited convulxin (Cvx)-induced platelet aggregation but only weakly inhibited that induced by collagen-related peptide. However, only GPVI-Fc(2), and not GPVIex, inhibited collagen-induced platelet aggregation. The dimeric form of GPVI exhibits high affinity for collagen, as concluded from measurements of GPVI binding to immobilized collagen by both the enzyme-linked immunosorbent assay and surface plasmon resonance methods. GPVI-Fc(2) bound to the surface of immobilized collagen with a dissociation constant (K(D)) of 5.76 x 10(-7) m, but the binding of GPVIex was too weak to allow estimation of this parameter. Cvx did not inhibit the binding of dimeric GPVI to collagen, indicating that the binding site of GPVI to collagen was different from that to Cvx. Taken together, our data indicate that the high affinity binding site for collagen is composed from two chains of GPVI. Furthermore, they suggest that the binding sites for Cvx are different from the collagen-binding sites and do not need to be formed by two GPVI molecules. Because dimeric GPVI is the only form that shows high affinity to fibrous collagen, our results indicate that GPVI would be present as a dimeric form on the platelet. Moreover, surface plasmon resonance indicated that there is no detectable interaction between soluble collagen and GPVI, supporting our previous observation that GPVI only reacts with fibrous collagen.  相似文献   

20.
We have used purified proteolytic fragments of von Willebrand factor (vWF) to characterize three related functional sites of the molecule that support interaction with platelet glycoprotein Ib, collagen, and heparin. A fragment of 116 kDa was found to be dimeric and consisted of disulfide-linked subunits which, after reduction and alkylation, corresponded to the previously described 52/48-kDa fragment extending from residue 449 to 728. Fragment III-T2, also a dimer, was composed of two pairs of disulfide-linked subunits, two 35-kDa heavy chains (residues 273-511) and two 10-kDa light chains (residues 674-728). The 116-kDa fragment, but not the constituent 52/48-kDa subunit, supported ristocetin-induced platelet aggregation and retained 20% (on a molar basis) of the ristocetin cofactor activity of native vWF; fragment III-T2 retained less than 5% activity. All three fragments, however, inhibited vWF interaction with glycoprotein Ib. Both 116-kDa and 52/48-kDa fragments inhibited vWF binding to heparin with similar potency, while fragment III-T2 had no effect in this regard. Only the 116-kDa fragment inhibited vWF binding to collagen. These results indicate that dimeric fragments containing two glycoprotein Ib-binding sites possess the minimal valency sufficient to support ristocetin-induced aggregation. The sequence comprising residues 512-673, missing in fragment III-T2, is necessary for binding to heparin and collagen and may be crucial for anchoring vWF to the subendothelium. Immunochemical and functional data suggest that the same sequence, although not essential for interaction with glycoprotein Ib, may influence the activity of the glycoprotein Ib-binding site. Only binding to collagen has absolute requirement for intact disulfide bonds. Thus, the three functional sites contained in the 116-kDa domain of vWF are structurally distinct.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号