首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Two crystal forms (P6(3) and R3) of human annexin V have been crystallographically refined at 2.3 A and 2.0 A resolution to R-values of 0.184 and 0.174, respectively, applying very tight stereochemical restraints with deviations from ideal geometry of 0.01 A and 2 degrees. The three independent molecules (2 in P6(3), 1 in R3) are similar, with deviations in C alpha positions of 0.6 A. The polypeptide chain of 320 amino acid residues is folded into a planar cyclic arrangement of four repeats. The repeats have similar structures of five alpha-helical segments wound into a right-handed compact superhelix. Three calcium ion sites in repeats I, II and IV and two lanthanum ion sites in repeat I have been found in the R3 crystals. They are located at the convex face of the molecule opposite the N terminus. Repeat III has a different conformation at this site and no calcium bound. The calcium sites are similar to the phospholipase A2 calcium-binding site, suggesting analogy also in phospholipid interaction. The center of the molecule is formed by a channel of polar charged residues, which also harbors a chain of ordered water molecules conserved in the different crystal forms. Comparison with amino acid sequences of other annexins shows a high degree of similarity between them. Long insertions are found only at the N termini. Most conserved are the residues forming the metal-binding sites and the polar channel. Annexins V and VII form voltage-gated calcium ion channels when bound to membranes in vitro. We suggest that annexins bind with their convex face to membranes, causing local disorder and permeability of the phospholipid bilayers. Annexins are Janus-faced proteins that face phospholipid and water and mediate calcium transport.  相似文献   

2.
Annexins and S100 proteins represent two large, but distinct, calcium-binding protein families. Annexins are made up of a highly alpha-helical core domain that binds calcium ions, allowing them to interact with phospholipid membranes. Furthermore, some annexins, such as annexins A1 and A2, contain an N-terminal region that is expelled from the core domain on calcium binding. These events allow for the interaction of the annexin N-terminus with target proteins, such as S100. In addition, when an S100 protein binds calcium ions, it undergoes a structural reorientation of its helices, exposing a hydrophobic patch capable of interacting with its targets, including the N-terminal sequences of annexins. Structural studies of the complexes between members of these two families have revealed valuable details regarding the mechanisms of the interactions, including the binding surfaces and conformation of the annexin N-terminus. However, other S100-annexin interactions, such as those between S100A11 and annexin A6, or between dicalcin and annexins A1, A2 and A5, appear to be more complicated, involving the annexin core region, perhaps in concert with the N-terminus. The diversity of these interactions indicates that multiple forms of recognition exist between S100 proteins and annexins. S100-annexin interactions have been suggested to play a role in membrane fusion events by the bridging together of two annexin proteins, bound to phospholipid membranes, by an S100 protein. The structures and differential interactions of S100-annexin complexes may indicate that this process has several possible modes of protein-protein recognition.  相似文献   

3.
The interactions of two plant annexins, annexin 24(Ca32) from Capsicum annuum and annexin Gh1 from Gossypium hirsutum, with phospholipid membranes have been characterized using liposome-based assays and adsorption to monolayers. These two plant annexins show a preference for phosphatidylserine-containing membranes and display a membrane binding behavior with a half-maximum calcium concentration in the sub-millimolar range. Surprisingly, the two plant annexins also display calcium-independent membrane binding at levels of 10-20% at neutral pH. This binding is regulated by three conserved surface-exposed residues on the convex side of the proteins that play a pivotal role in membrane binding. Due to quantitative differences in the membrane binding behavior of N-terminally His-tagged and wild-type annexin 24(Ca32), we conclude that the N-terminal domain of plant annexins plays an important role, reminiscent of the findings in their mammalian counterparts. Experiments elucidating plant annexin-mediated membrane aggregation and fusion, as well as the effect of these proteins on membrane surface hydrophobicity, agree with findings from the membrane binding experiments. Results from electron microscopy reveal elongated rodlike assemblies of plant annexins in the membrane-bound state. It is possible that these structures consist of protein molecules directly interacting with the membrane surface and molecules that are membrane-associated but not in direct contact with the phospholipids. The rodlike structures would also agree with the complex data from intrinsic protein fluorescence. The tubular lipid extensions suggest a role in the membrane cytoskeleton scaffolding or exocytotic processes. Overall, this study demonstrates the importance of subtle changes in an otherwise conserved annexin fold where these two plant annexins possess distinct modalities compared to mammalian and other nonplant annexins.  相似文献   

4.
Annexins play critical roles in membrane organization, membrane trafficking and vesicle transport. The family members share the ability to bind to membranes with high affinities, but the interactions between annexins and membranes remain unclear. Here, using long‐time molecular dynamics simulations, we provide detailed information for the binding of an annexin V trimer to a POPC/POPS lipid bilayer. Calcium ions function as bridges between several negatively charged residues of annexin V and the oxygen atoms of lipids. The preferred calcium‐bridges are those formed via the carboxyl oxygen atoms of POPS lipids. H‐bonds and hydrophobic interactions formed by several critical residues have also been observed in the annexin‐membrane interface. The annexin‐membrane binding causes small changes of annexin trimer structures, while has significant effects on lipid bilayer structures. The lipid bilayer shows a bent shape and forms a concave region in the annexin‐membrane interaction interface, which provides an atomic‐level evidence to support the view that annexins could disturb the stability of lipids and bend membranes. This study provides insights into the commonly occurring PS‐dependent and calcium‐dependent binding of proteins to membranes. Proteins 2014; 82:312–322. © 2013 Wiley Periodicals, Inc.  相似文献   

5.
Annexins are calcium‐dependent phospholipid‐binding proteins involved in calcium signaling and intracellular membrane trafficking among other functions. Vesicle aggregation is a crucial event to make possible the membrane remodeling but this process is energetically unfavorable, and phospholipid membranes do not aggregate and fuse spontaneously. This issue can be circumvented by the presence of different agents such as divalent cations and/or proteins, among them some annexins. Although human annexin A5 lacks the ability to aggregate vesicles, here we demonstrate that its highly similar chicken ortholog induces aggregation of vesicles containing acidic phospholipids even at low protein and/or calcium concentration by establishment of protein dimers. Our experiments show that the ability to aggregate vesicles mainly resides in the N‐terminus as truncation of the N‐terminus of chicken annexin A5 significantly decreases this process and replacement of the N‐terminus of human annexin A5 by that of chicken switches on aggregation; in both cases, there are no changes in the overall protein structure and only minor changes in phospholipid binding. Electrostatic repulsions between negatively charged residues in the concave face of the molecule, mainly in the N‐terminus, seem to be responsible for the impairment of dimer formation in human annexin A5. Taking into account that chicken annexin A5 presents a high sequence and structural similarity with mammalian annexins absent in birds, as annexins A3 and A4, some of the physiological functions exerted by these proteins may be carried out by chicken annexin A5, even those that could require calcium‐dependent membrane aggregation.  相似文献   

6.
The plasma membrane of the heart muscle cell and its underlying cytoskeleton are vitally important to the function of the heart. Annexin A6 is a major cellular calcium and phospholipid binding protein. Here we show that annexin A6 copurifies with sarcolemma isolated from pig heart. Two pools of annexin A6 are present in the sarcolemma fraction, one dependent on calcium and one that resists extraction by the calcium chelator EGTA. Potential annexin A6 binding proteins in the sarcolemma fraction were identified using Far Western blotting. Two major annexin A6 binding proteins were identified as actin and annexin A6 itself. Annexin A6 bound to itself both in the presence and in the absence of calcium ions. Sites for self association were mapped by performing Western blots on proteolytic fragments of recombinant annexin A6. Annexin A6 bound preferentially not only to the N terminal fragment (domains I-IV, residues 1-352) but also to C-terminal fragments corresponding to domains V+VI and domains VII+VIII. Actin binding to annexin A6 was calcium-dependent and exclusively to the N-terminal fragment of annexin A6. A calcium-dependent complex of annexin A6 and actin may stabilize the cardiomyocyte sarcolemma during cell stimulation.  相似文献   

7.
Annexin V is a member of a family of structurally homologous proteins sharing the ability to bind to negatively charged phospholipid membranes in a Ca(2+)-dependent manner. The structure of the soluble form of annexin V has been solved by X-ray crystallography, while electron crystallography of two-dimensional (2D) crystals has been used to reveal the structure of its membrane-bound form. Two 2D crystal forms of annexin V have been reported to date, with either p6 or p3 symmetry. Atomic force microscopy has previously been used to investigate the growth and the topography of the p6 crystal form on supported phospholipid bilayers (Reviakine et al., 1998). The surface structure of the second crystal form, p3, is presented in this study, along with an improved topographic map of the p6 crystal form. The observed topography is correlated with the structure determined by X-ray crystallography.  相似文献   

8.
The functional hallmark of annexins is the ability to bind to the surface of phospholipid membranes in a reversible, Ca(2+)-dependent manner. We now report that human annexin V and hydra annexin XII reversibly bound to phospholipid vesicles in the absence of Ca(2+) at low pH; half-maximal vesicle association occurred at pH 5.3 and 5. 8, respectively. The following biochemical data support the hypothesis that these annexins insert into bilayers at mildly acidic pH. First, a photoactivatable reagent (3-trifluoromethyl)-3-(m-[(125)I]iodophenyl)diazirine) which selectively labels proteins exposed to the hydrophobic domain of bilayers reacted with these annexins at pH 5.0 and below but not at neutral pH. Second, in a Triton X-114 partitioning assay, annexins V and XII act as integral membrane proteins at low pH and as hydrophilic proteins at neutral pH; in the presence of phospholipids half-maximal partitioning into detergent occurred at pH approximately 5.0. Finally, annexin V or XII formed single channels in phospholipid bilayers at low pH but not at neutral pH. A model is discussed in which the concentrations of H(+) and Ca(2+) regulate the reversible conversion of three forms of annexins-soluble, peripheral membrane, and transmembrane.  相似文献   

9.
We have purified annexin V, a monomeric 35-kDa protein, from rat kidney using calcium-dependent phospholipid chromatography. The identity of annexin V was confirmed by immunoblot analysis using monospecific anti-annexin V antibody. Large single crystals of annexin V in the presence of calcium have been grown from ammonium sulfate under a variety of conditions, with an optimum pH range of 7.5-8.0. The crystals diffract to at least 2.2 A Bragg spacing and are stable to x-rays. Preliminary crystallographic analysis reveals the space group to be R3, with hexagonal cell dimensions of a = b = 156.8 A and c = 36.9 A, and there is one molecule/asymmetric unit.  相似文献   

10.
Annexin V, an intracellular protein with a calcium-dependent high affinity for anionic phospholipid membranes, acts as an inhibitor of lipid-dependent reactions of the blood coagulation. Antiphospholipid antibodies found in the plasma of patients with antiphospholipid syndrome generally do not interact with phospholipid membranes directly, but recognize (plasma) proteins associated with lipid membranes, mostly prothrombin or beta(2)-glycoprotein I (beta(2)GPI). Previously, it has been proposed that antiphospholipid antibodies may cause thrombosis by displacing annexin V from procoagulant cell surfaces. We used ellipsometry to study the binding of annexin V and of complexes of beta(2)GPI with patient-derived IgG antibodies to beta(2)GPI, commonly referred to as anticardiolipin antibodies (ACA), to phospholipid bilayers composed of phosphatidylcholine (PC) and 20% phosphatidylserine (PS). More specifically, we investigated the competition of these proteins for the binding sites at these bilayers. We show that ACA-beta(2)GPI complexes, adsorbed to PSPC bilayers, are displaced for more than 70% by annexin V and that annexin V binding is unaffected by the presence of ACA-beta(2)GPI complexes. Conversely, annexin V preadsorbed to these bilayers completely prevents adsorption of ACA-beta(2)GPI complexes, and none of the preadsorbed annexin V is displaced by ACA-beta(2)GPI complexes. Using ellipsometry, we also studied the effect of ACA-beta(2)GPI complexes on the interaction of annexin V with the membranes of ionophore-activated blood platelets as a more physiological relevant model of cell membranes. The experiments with blood platelets confirm the high-affinity binding of annexin V to these membranes and unequivocally show that annexin V binding is unaffected by the presence of ACA-beta(2)GPI. In conclusion, our data unambiguously show that ACA-beta(2)GPI complexes are unable to displace annexin V from procoagulant membranes to any significant extent, whereas annexin V does displace the majority of preadsorbed ACA-beta(2)GPI complexes from these membranes.  相似文献   

11.
Interactions of annexins with membrane phospholipids.   总被引:2,自引:0,他引:2  
The annexins are proteins that bind to membranes and can aggregate vesicles and modulate fusion rates in a Ca2(+)-dependent manner. In this study, experiments are presented that utilize a pyrene derivative of phosphatidylcholine to examine the Ca2(+)-dependent membrane binding of soluble human annexin V and other annexins. When annexin V and other annexins were bound to liposomes containing 5 mol % acyl chain labeled 3-palmitoyl-2-(1-pyrenedecanoyl)-L-alpha-phosphatidylcholine, a decrease in the excimer-to-monomer fluorescence ratio was observed, indicating that annexin binding may decrease the lateral mobility of membrane phospholipids without inducing phase separation. The observed increases of monomer fluorescence occurred only with annexins and not with other proteins such as parvalbumin or bovine serum albumin. The extent of the increase of monomer fluorescence was dependent on the protein concentration and was completely and rapidly reversible by EDTA. Annexin V binding to phosphatidylserine liposomes was consistent with a binding surface area of 59 phospholipid molecules per protein. Binding required Ca2+ concentrations ranging between approximately 10 and 100 microM, where there was no significant aggregation or fusion of liposomes on the time scale of the experiments. The polycation spermine also displaced bound annexins, suggesting that binding is largely ionic in nature under these conditions.  相似文献   

12.
Proteins of the annexin/lipocortin family act as in vitro anticoagulants by binding to anionic phospholipid vesicles. In this study, we investigated whether annexin V (placental anticoagulant protein I) would bind to human platelets. Annexin V bound to unstimulated platelets in a reversible, calcium-dependent reaction with an apparent Kd of 7 nM and 5000-8000 sites/platelet. Additional binding sites could be induced by several platelet agonists in the following order of effectiveness: A23187 greater than collagen + thrombin greater than collagen greater than thrombin. However, neither ADP nor epinephrine induced additional binding sites. Three other proteins of the annexin family (annexins II, III, and IV) competed for annexin V platelets binding sites with the same relative potencies previously observed for binding to phospholipid vesicles. Phospholipid vesicles containing phosphatidylserine completely inhibited binding of annexin V to platelets. Annexin V completely blocked binding of 125I-factor Xa to thrombin-stimulated platelets. These results support the hypothesis that phosphatidylserine exposure occurs during platelet activation and may be necessary for assembly of the prothrombinase complex on platelet membranes.  相似文献   

13.
Bitto E  Li M  Tikhonov AM  Schlossman ML  Cho W 《Biochemistry》2000,39(44):13469-13477
It has been proposed that annexin I has two separate interaction sites that are involved in membrane binding and aggregation, respectively. To better understand the mechanism of annexin I-mediated membrane aggregation, we investigated the properties of the inducible secondary interaction site implicated in membrane aggregation. X-ray specular reflectivity measurements showed that the thickness of annexin I layer bound to the phospholipid monolayer was 31 +/- 2 A, indicating that annexin I binds membranes as a protein monomer or monolayer. Surface plasmon resonance measurements of annexin I, V, and mutants, which allowed evaluation of membrane aggregation activity of annexin I separately from its membrane binding, revealed direct correlation between the relative membrane aggregation activity and the relative affinity of the secondary interaction site for the secondary membrane. The secondary binding was driven primarily by hydrophobic interactions, unlike calcium-mediated electrostatic primary membrane binding. Chemical cross-linking of membrane-bound annexin I showed that a significant degree of lateral association of annexin I molecules precedes its membrane aggregation. Taken together, these results support a hypothetical model of annexin I-mediated membrane aggregation, in which a laterally aggregated monolayer of membrane-bound annexin I directly interacts with a secondary membrane via its induced hydrophobic interaction site.  相似文献   

14.
Annexin V is an abundant eukaryotic protein that binds phospholipid membranes in a Ca(2+)-dependent manner. In the present studies, site-directed mutagenesis was combined with x-ray crystallography and solution liposome binding assays to probe the functional role of a cluster of interfacial basic residues in annexin V. Four mutants were investigated: R23E, K27E, R61E, and R149E. All four mutants exhibited a significant reduction in adsorption to phospholipid membranes relative to the wild-type protein, and the R23E mutation was the most deleterious. Crystal structures of wild-type and mutant proteins were similar except for local changes in salt bridges involving basic cluster residues. The combined data indicate that Arg(23) is a major determinant for interfacial phospholipid binding and participates in an intermolecular salt bridge that is key for trimer formation on the membrane surface. Together, crystallographic and solution data provide evidence that the interfacial basic cluster is a locus where trimerization is synergistically coupled to membrane phospholipid binding.  相似文献   

15.
cDNA coding for N-terminally truncated human annexin I, a member of the family of Ca(2+)-dependent phospholipid binding proteins, has been cloned and expressed in Escherichia coli. The expressed protein is biologically active, and has been purified and crystallized in space group P2(1)2(1)2(1) with cell dimensions a = 139.36 A, b = 67.50 A, and c = 42.11 A. The crystal structure has been determined by molecular replacement at 3.0 A resolution using the annexin V core structure as the search model. The average backbone deviation between these two structures is 2.34 A. The structure has been refined to an R-factor of 17.7% at 2.5 A resolution. Six calcium sites have been identified in the annexin I structure. Each is located in the loop region of the helix-loop-helix motif. Two of the six calcium sites in annexin I are not occupied in the annexin V structure. The superpositions of the corresponding loop regions in the four domains show that the calcium binding loops in annexin I can be divided into two classes: type II and type III. Both classes are different from the well-known EF-hand motif (type I).  相似文献   

16.
Annexins constitute a family of calcium-dependent membrane-binding proteins and can be classified into two groups, depending on the length of the N-terminal domain unique for each individual annexin. The N-terminal domain of annexin A1 can adopt an α-helical conformation and has been implicated in mediating the membrane aggregation behavior of this protein. Although the calcium-independent interaction of the annexin A1 N-terminal domain has been known for some time, there was no structural information about the membrane interaction of this secondary membrane-binding site of annexin A1. This study used circular dichroism spectroscopy to show that a rat annexin A1 N-terminal peptide possesses random coil structure in aqueous buffer but an α-helical structure in the presence of small unilamellar vesicles. The binding of peptides to membranes was confirmed by surface pressure (Langmuir film balance) measurements using phosphatidylcholine/phosphatidylserine monolayers, which show a significant increase after injection of rat annexin A1 N-terminal peptides. Lamellar neutron diffraction with human and rat annexin A1 N-terminal peptides reveals an intercalation of the helical peptides with the phospholipid bilayer, with the helix axis lying parallel to the surface of membrane. Our findings confirm that phospholipid membranes assist the folding of the N-terminal peptides into α-helical structures and that this conformation enables favorable direct interactions with the membrane. The results are consistent with the hypothesis that the N-terminal domain of annexin A1 can serve as a secondary membrane binding site in the process of membrane aggregation by providing a peripheral membrane anchor.  相似文献   

17.
Using a recently described flow cytometric assay probing for cell surface exposure of phosphatidylserine with fluoresceine-labeled annexin V, we attempted to establish if there existed any differences in the phospholipid bilayer of the plasma membranes of melanoma cells isolated from two lines of a hamster transplantable melanoma characterized by a common origin but differing in many biological features. In contrast to control nonstaining cells, the cells of both melanoma lines bound annexin V, but at a different rate: 88% of melanotic and 94% of amelanotic melanoma cells were annexin V positive. Among cells of the native melanotic melanoma line we distinguished only one cell population binding annexin but in some experiments with the amelanotic melanoma we observed two annexin V positive cell populations with a different fluorescence intensity. It is possible that these differences in annexin V binding to melanoma cell membranes reflect some changes in the phospholipid bilayer, associated with the progression of these tumors.  相似文献   

18.
The distribution of annexin V isoforms (CaBP33 and CaBP37) and of annexin VI in bovine lung, heart, and brain subfractions was investigated with special reference to the fractions of these proteins which are membrane-bound. In addition to EGTA-extractable pools of the above proteins, membranes from lung, heart, and brain contain EGTA-resistant annexins V and VI which can be solubilized with detergents (Triton X-100 or Triton X-114). A strong base like Na2CO3, which is usually effective in extracting membrane proteins, only partially solubilizes the membrane-bound, EGTA-resistant annexins analyzed here. Also, only 50-60% of the Triton X-114-soluble annexins partition in the aqueous phase, the remaining fractions being recovered in the detergent-rich phase. Altogether, these findings suggest that, by an as yet unknown mechanism, following Ca(2+)-dependent association of annexin V isoforms and annexin VI with membranes, substantial fractions of these proteins remain bound to membranes in a Ca(2+)-independent way and behave like integral membrane proteins. These results further support the possibility that the above annexins might play a role in membrane trafficking and/or in the regulation of the structural organization of membranes.  相似文献   

19.
Crystal structures of annexin V have shown up to 10 bound calcium ions in three different types of binding sites, but previous work concluded that only one of these sites accounted for nearly all of the membrane binding affinity of the molecule. In this study we mutated residues contributing to potential calcium binding sites in the AB and B helices in each of the four domains (eight sites in total) and in DE helices in the first, second, and third domains (three sites in total). We measured the affinity of each protein for phospholipid vesicles and cell membranes by quantitative calcium titration under low occupancy conditions (< 1% saturation of available membrane binding sites). Affinity was calculated from the midpoint and slope of the calcium titration curve and the concentration of membrane binding sites. The results showed that all four AB sites were essential for high affinity binding, as were three of the four B sites (in domains 1, 2, and 3); the DE site in the first domain made a slight contribution to affinity. Multisite mutants showed that each domain contributed additively and independently to binding affinity; in contrast, AB and B sites within the same domain were interdependent. The number of functionally important sites identified was consistent with the Hill coefficient observed in calcium titrations. This study shows an essential and previously unappreciated role for B-helix calcium binding sites in the membrane binding of annexins and indicates that all four domains of the molecule are required for maximum membrane binding affinity.  相似文献   

20.
Annexins are soluble proteins that are best known for their ability to undergo reversible Ca(2+)-dependent binding to the surface of phospholipid bilayers. Recent studies, however, have shown that annexins also reversibly bind to membranes in a Ca(2+)-independent manner at mildly acidic pH. We investigated the structural changes that occur upon pH-dependent membrane binding by performing a nitroxide scan on the helical hairpin encompassing helices A and B in the fourth repeat of annexin B12. Residues 251-273 of annexin B12 were replaced, one at a time, with cysteine and then labeled with a nitroxide spin label. Electron paramagnetic resonance (EPR) mobility and accessibility analyses of soluble annexin B12 derivatives were in excellent agreement with the known crystal structure of annexin B12. However, EPR studies of annexin B12 derivatives bound to membranes at pH 4.0 indicated major structural changes in the scanned region. The helix-loop-helix structure present in the soluble protein was converted into a continuous transmembrane alpha-helix that was exposed to the hydrophobic core of the bilayer on one side and exposed to an aqueous pore on the other side. Asp-264 was on the hydrophobic membrane-exposed face of the amphipathic transmembrane helix, thereby suggesting that protonation of its carboxylate group stabilized the transmembrane form. Inspection of the amino acid sequence of annexin B12 revealed several other helical hairpin regions that might refold and form continuous amphipathic transmembrane helices in response to protonation of Asp or Glu switch residues on or near the hydrophobic face of the helix.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号