首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The microbially derived polyhydroxyalkanoates biopolymers could impact the global climate scenario by replacing the conventional non-degradable, petrochemical-based polymer. The biogenesis, characterization and properties of PHAs by Bacillus species using renewable substrates have been elaborated by many for their wide applications. On the other hand Bacillus species are advantageous over other bacteria due to their abundance even in extreme ecological conditions, higher growth rates even on cheap substrates, higher PHAs production ability, and the ease of extracting the PHAs. Bacillus species possess hydrolytic enzymes that can be exploited for economical PHAs production. This review summarizes the recent trends in both non-growth and growth associated PHAs production by Bacillus species which may provide direction leading to future research towards this growing quest for biodegradable plastics, one more critical step ahead towards sustainable development.  相似文献   

2.
Bacterial polyhydroxyalkanoates   总被引:34,自引:0,他引:34  
Polyhydroxyalkanoates (PHAs) are polyesters of hydroxyalkanoates (HAs) synthesized by numerous bacteria as intracellular carbon and energy storage compounds and accumulated as granules in the cytoplasm of cells. More than 80 HAs have been detected as constituents of PHAs, which allows these thermoplastic materials to have various mechanical properties resembling hard crystalline polymer or elastic rubber depending on the incorporated monomer units. Even though PHAs have been recognized as good candidates for biodegradable plastics, their high price compared with conventional plastics has limited their use in a wide range of applications. A number of bacteria including Alcaligenes eutrophus, Alcaligenes latus, Azotobacter vinelandii, methylotrophs, pseudomonads, and recombinant Escherichia coli have been employed for the production of PHAs, and the productivity of greater than 2 g PHA/L/h has been achieved. Recent advances in understanding metabolism, molecular biology, and genetics of the PHA-synthesizing bacteria and cloning of more than 20 different PHA biosynthesis genes allowed construction of various recombinant strains that were able to synthesize polyesters having different monomer units and/or to accumulate much more polymers. Also, genetically engineered plants harboring the bacterial PHA biosynthesis genes are being developed for the economical production of PHAs. Improvements in fermentation/separation technology and the development of bacterial strains or plants that more efficiently synthesize PHAs will bring the costs down to make PHAs competitive with the conventional plastics. (c) 1996 John Wiley & Sons, Inc.  相似文献   

3.
Gram-positive bacteria, notably Bacillus and Streptomyces, have been used extensively in industry. However, these microorganisms have not yet been exploited for the production of the biodegradable polymers, polyhydroxyalkanoates (PHAs). Although PHAs have many potential applications, the cost of production means that medical applications are currently the main area of use. Gram-negative bacteria, currently the only commercial source of PHAs, have lipopolysaccharides (LPS) which co-purify with the PHAs and cause immunogenic reactions. On the other hand, Gram- positive bacteria lack LPS, a positive feature which justifies intensive investigation into their production of PHAs. This review summarizes currently available knowledge on PHA production by Gram- positive bacteria especially Bacillus and Streptomyces. We hope that this will form the basis of further research into developing either or both as a source of PHAs for medical applications.  相似文献   

4.
Biomedical Applications of Polyhydroxyalkanoates   总被引:1,自引:0,他引:1  
Polyhydroxyalkanoates (PHA) are produced by a large number of microbes under stress conditions such as high carbon (C) availability and limitations of nutrients such as nitrogen, potassium, phosphorus, magnesium, and oxygen. Here, microbes store C as granules of PHAs—energy reservoir. PHAs have properties, which are quite similar to those of synthetic plastics. The unique properties, which make them desirable materials for biomedical applications is their biodegradability, biocompatibility, and non-toxicity. PHAs have been found suitable for various medical applications: biocontrol agents, drug carriers, biodegradable implants, tissue engineering, memory enhancers, and anticancer agents.  相似文献   

5.
Polyhydroxyalkanoate (PHAs) are natural, biodegradable biopolymers, which can be produced from renewable materials. PHAs have potential to replace petroleum derived plastics. Quite a few bacteria can produce PHA under nutritional stress. They generally produce homopolymers of butyrate i.e., polyhydroxybutyrate (PHB), as a storage material. The biochemical characteristics of PHB such as brittleness, low strength, low elasticity, etc. make these unsuitable for commercial applications. Co-polymers of PHA, have high commercial value as they overcome the limitations of PHBs. Co-polymers can be produced by supplementing the feed with volatile fatty acids or through hydrolysates of different biowastes. In this review, we have listed the potential bacterial candidates and the substrates, which can be co-metabolized to produce PHA co-polymers.  相似文献   

6.
As concerns increase regarding sustainable industries and environmental pollutions caused by the accumulation of non-degradable plastic wastes, bio-based polymers, particularly biodegradable plastics, have attracted considerable attention as potential candidates for solving these problems by substituting petroleum-based plastics. Among these candidates, polyhydroxyalkanoates (PHAs), natural polyesters that are synthesized and accumulated in a range of microorganisms, are considered as promising biopolymers since they have biocompatibility, biodegradability, and material properties similar to those of commodity plastics. Accordingly, substantial efforts have been made to gain a better understanding of mechanisms related to the biosynthesis and properties of PHAs and to develop natural and recombinant microorganisms that can efficiently produce PHAs comprising desired monomers with high titer and productivity for industrial applications.Recent advances in biotechnology, including those related to evolutionary engineering, synthetic biology, and systems biology, can provide efficient and effective tools and strategies that reduce time, labor, and costs to develop microbial platform strains that produce desired chemicals and materials. Adopting these technologies in a systematic manner has enabled microbial fermentative production of non-natural polyesters such as poly(lactate) [PLA], poly(lactate-co-glycolate) [PLGA], and even polyesters consisting of aromatic monomers from renewable biomass-derived carbohydrates, which can be widely used in current chemical industries.In this review, we present an overview of strain development for the production of various important natural PHAs, which will give the reader an insight into the recent advances and provide indicators for the future direction of engineering microorganisms as plastic cell factories. On the basis of our current understanding of PHA biosynthesis systems, we discuss recent advances in the approaches adopted for strain development in the production of non-natural polyesters, notably 2-hydroxycarboxylic acid-containing polymers, with particular reference to systems metabolic engineering strategies.  相似文献   

7.
Polyhydroxyalkanoates (PHAs) are storage compounds synthesized by numerous microorganisms and have attracted the interest of industry since they are biobased and biodegradable alternatives to fossil fuel-derived plastics. Among PHAs, poly(3-hydroxypropionate) [poly(3HP)] has outstanding material characteristics and exhibits a large variety of applications. As it is not brittle like, e.g., the best-studied PHA, poly(3-hydroxybutyrate) [poly(3HB)], it can be used as a plasticizer in blends to improve their properties. Furthermore, 3-hydroxypropionic acid (3HP) is considered likely to become one of the new industrial building blocks, and it can be obtained from poly(3HP) by simple hydrolysis. Unfortunately, no natural organism is known to accumulate poly(3HP) so far. Thus, several efforts have been made to engineer genetically modified organisms capable of synthesizing the homopolymer or copolymers containing 3HP. In this review, the achievements made so far in efforts to obtain biomass which has accumulated poly(3HP) or 3HP-containing copolymers, as well as the properties of these polyesters and their applications, are compiled and evaluated.  相似文献   

8.
Polyhydroxyalkanoates (PHAs) are a class of biopolyesters that are synthesized intracellularly by microorganisms, mainly by different genera of eubacteria. These biopolymers have diverse physical and chemical properties that also classify them as biodegradable in nature and make them compatible to living systems. In the last two decades or so, PHAs have emerged as potential useful materials in the medical field for different applications owing to their unique properties. The lower acidity and bioactivity of PHAs confer them with minimal risk compared to other biopolymers such as poly-lactic acid (PLA) and poly-glycolic acid (PGA). Therefore, the versatility of PHAs in terms of their non-toxic degradation products, biocompatibility, desired surface modifications, wide range of physical and chemical properties, cellular growth support, and attachment without carcinogenic effects have enabled their use as in vivo implants such as sutures, adhesion barriers, and valves to guide tissue repair and in regeneration devices such as cardiovascular patches, articular cartilage repair scaffolds, bone graft substitutes, and nerve guides. Here, we briefly describe some of the most recent innovative research involving the use of PHAs in medical applications. Microbial production of PHAs also provides the opportunity to develop PHAs with more unique monomer compositions economically through metabolic engineering approaches. At present, it is generally established that the PHA monomer composition and surface modifications influence cell responses.PHA synthesis by bacteria does not require the use of a catalyst (used in the synthesis of other polymers), which further promotes the biocompatibility of PHA-derived polymers.  相似文献   

9.
利用废弃物发酵法生产聚羟基烷酸PHAs   总被引:1,自引:0,他引:1  
聚羟基烷酸(PHAs)是一种可降解聚合物,与石化塑料相比它具有生物降解性及生物相容性等优点,在不久的将来必然有广阔的应用前景。生产PHAs的主要方法是发酵法,在过去的几十年里传统的深层发酵法生产PHAs的工艺已经得到深入的研究,近些年固态发酵法生产PHAs也吸引了越来越多研究者的关注。  相似文献   

10.
Biodegradable materials with plastic or elastomeric properties are in great demand for a variety of applications. Polyhydroxyalkanoates (PHAs), polyesters synthesized by microorganisms, possess such desired features. Industrial production of PHAs is currently achieved using recombinant Escherichia coli. Nevertheless, recent research on halophiles, salt requiring microorganisms, has shown a remarkable potential for biotechnological production of PHAs. The halophilic archaeon Haloferax mediterranei accumulates a co-polymer, i.e., poly(3-hydroxybutyrate-co-3-hydroxyvalerate) in large amounts using glucose, starch, and hydrolyzed whey as carbon sources. Chemical composition and molecular weight of PHAs produced by H. mediterranei can be modified depending on the substrate utilized as precursor. Phylogenetic studies on haloarchaeal enzymes able to polymerize the components of PHAs (i.e., PHA synthases) reveal a novel cluster, with a close relationship with PHA polymerases of bacteria and archaea found in marine-related niches. On the other hand, sequences of PHA synthases of two halophilic bacteria are more closely affiliated to synthases of Proteobacteria. Several bacterial species of the family Halomonadaceae accumulate PHAs. Halomonas boliviensis reached PHA yields and volumetric productivities close to the highest reported so far. Furthermore, H. boliviensis and other Halomonas species are able to co-produce PHA and osmolytes, i.e., ectoines and hydroxyectoine, in one process.  相似文献   

11.
Polyhydroxyalkanoates (PHA) are polyesters of bacterial origin that have properties of biodegradable plastics and elastomers. Synthesis of PHA in crop plants would allow the large-scale production and use of these biodegradable and renewable polymers as substitutes for petroleum-derived plastics. Synthesis of a diversity of PHAs in plants, such as Arabidopsis thaliana, rapeseed, corn and cotton, has been demonstrated through the genetic engineering of metabolic pathways in the cytoplasm, plastid and peroxisome. PHA can also be used as a novel tool to study various aspects of plant metabolism, such as the regulation of carbon flux to the fatty acid biosynthetic and degradation pathways.  相似文献   

12.
Bacterial biopolymers such as bacterial cellulose (BC), alginate or polyhydroxyalkanotes (PHAs) have aroused the interest of researchers in many fields, for instance biomedicine and packaging, due to their being biodegradable, biocompatible and renewable. Their properties can easily be tuned by means of microbial biotechnology strategies combined with materials science. This provides them with highly diverse properties, conferring them non-native features. Herein we highlight the enormous structural diversity of these macromolecules, how are they produced, as well as their wide range of potential applications in our daily lives. The emergence of new technologies, such as synthetic biology, enables the creation of next-generation-advanced materials presenting smart functional properties, for example the ability to sense and respond to stimuli as well as the capacity for self-repair. All this has given rise to the recent emergence of biohybrid materials, in which a synthetic component is brought to life with living organisms. Two different subfields have recently garnered particular attention: hybrid living materials (HLMs), such as encapsulation or bioprinting, and engineered living materials (ELMs), in which the material is created bottom-up with the use of microbial biotechnology tools. Early studies showed the strong potential of alginate and PHAs as HLMs, whilst BC constituted the most currently promising material for the creation of ELMs.  相似文献   

13.
Polyhydroxyalkanoates (PHAs)are the polymers of hydroxyalkanoates that accumulate as carbon/energy or reducing-power storage material in various microorganisms.PHAs have attracted considerable attention as biodegradable substitutes for conventional polymers.Until now,however,industrial production of PHAs has encountered only limited success.The main barrier to the replacement of synthetic plastics by PHAs has been the higher cost.The use of mixed cultures and renewable sources obtained from waste organic carbon can substantially decrease the cost of PHA and increase their market potential.This work reviews two main methods of PHA production by mixed cultures,anaerobicaerobic processing and aerobic transient feeding processing,and analyzed the metabolic and effective factors.  相似文献   

14.
Plastics, used everyday, are mostly synthetic polymers derived from fossil resources, and their accumulation is becoming a serious concern worldwide. Polyhydroxyalkanoates (PHAs) are naturally produced polyesters synthesized and intracellularly accumulated by many different microorganisms. PHAs are good alternatives to petroleum‐based plastics because they possess a wide range of material properties depending on monomer types and molecular weights. In addition, PHAs are biodegradable and can be produced from renewable biomass. Thus, producing PHAs through the development of high‐performance engineered microorganisms and efficient bioprocesses gained much interest. In addition, non‐natural polyesters comprising 2‐hydroxycarboxylic acids as monomers have been produced by fermentation of metabolically engineered bacteria. For example, poly(lactic acid) and poly(lactic acid‐co‐glycolic acid), which have been chemically synthesized using the corresponding monomers either fermentatively or chemically produced, can be produced by metabolically engineered bacteria by one‐step fermentation. Recently, PHAs containing aromatic monomers could be produced by fermentation of metabolically engineered bacteria. Here, metabolic engineering strategies applied in developing microbial strains capable of producing non‐natural polyesters in a stepwise manner are reviewed. It is hoped that the detailed strategies described will be helpful for designing metabolic engineering strategies for developing diverse microbial strains capable of producing various polymers that can replace petroleum‐derived polymers.  相似文献   

15.
The increasing effect of non-degradable plastic wastes is a growing concern. Polyhydroxyalkanoates (PHAs), macromolecule-polyesters naturally produced by many species of microorganisms, are being considered as a replacement for conventional plastics. Unlike petroleum-derived plastics that take several decades to degrade, PHAs can be completely bio-degraded within a year by a variety of microorganisms. This biodegradation results in carbon dioxide and water, which return to the environment. Attempts based on various methods have been undertaken for mass production of PHAs. Promising strategies involve genetic engineering of microorganisms and plants to introduce production pathways. This challenge requires the expression of several genes along with optimization of PHA synthesis in the host. Although excellent progress has been made in recombinant hosts, the barriers to obtaining high quantities of PHA at low cost still remain to be solved. The commercially viable production of PHA in crops, however, appears to be a realistic goal for the future.  相似文献   

16.
Polyhydroxyalkanoates (PHAs) are the polymers of hydroxyalkanoates that accumulate as carbon/energy or reducing-power storage material in various microorganisms. PHAs have attracted considerable attention as biodegradable substitutes for conventional polymers. Until now, however, industrial production of PHAs has encountered only limited success. The main barrier to the replacement of synthetic plastics by PHAs has been the higher cost. The use of mixed cultures and renewable sources obtained from waste organic carbon can substantially decrease the cost of PHA and increase their market potential. This work reviews two main methods of PHA production by mixed cultures, anaerobic-aerobic processing and aerobic transient feeding processing, and analyzed the metabolic and effective factors.  相似文献   

17.
Kalia VC  Lal S  Cheema S 《Gene》2007,389(1):19-26
Polyhydroxyalkanoates (PHAs) are gaining more and more importance the world over due to their structural diversity and close analogy to plastics. Their biodegradability makes them extremely desirable substitutes for synthetic plastics. PHAs are produced in organisms under certain stress conditions. Here, we investigated 253 sequenced (completely and unfinished) genomes for the diversity and phylogenetics of the PHA biosynthesis. Discrepancies in the phylogenetic trees for phaA, phaB and phaC genes of the PHA biosynthesis have led to the suggestion that horizontal gene transfer (HGT) may be a major contributor for its evolution. Twenty four organisms belonging to diverse taxa were found to be involved in HGT. Among these, Bacillus cereus ATCC 14579 and Xanthomonas axonopodis pv. citri str. 306 seem to have acquired all the three genes through HGT events and have not been characterized so far as PHA producers. This study also revealed certain potential organisms such as Streptomyces coelicolor A3(2), Staphylococcus epidermidis ATCC 12228, Brucella suis 1330, Burkholderia sp., DSMZ 9242 and Leptospira interrogans serovar lai str. 56601, which can be transformed into novel PHA producers through recombinant DNA technology.  相似文献   

18.
Polyhydroxyalkanoates (PHAs) as an alternative to synthetic plastics have been gaining increasing attention. Being natural in their origin, PHAs are completely biodegradable and eco-friendly. However, consistent efforts to exploit this biopolymer over the last few decades have not been able to pull PHAs out of their nascent stage, inspite of being the favorite of the commercial world. The major limitations are: (1) the high production cost, which is due to the high cost of the feed and (2) poor thermal and mechanical properties of polyhydroxybutyrate (PHB), the most commonly produced PHAs. PHAs have the physicochemical properties which are quite comparable to petroleum based plastics, but PHB being homopolymers are quite brittle, less elastic and have thermal properties which are not suitable for processing them into sturdy products. These properties, including melting point (Tm), glass transition temperature (Tg), elastic modulus, tensile strength, elongation etc. can be improved by varying the monomeric composition and molecular weight. These enhanced characteristics can be achieved by modifications in the types of substrates, feeding strategies, culture conditions and/or genetic manipulations.  相似文献   

19.
Polyhydroxyalkanoates (PHAs) make a large class of biodegradable biopolymers that are naturally synthesized by numerous microorganisms. These biopolymers could be an alternative to commonly used plastics based on petroleum. Production of PHAs in bioreactors using microorganisms is not widely applied due to its unprofitability. Using transgenic plants for this purpose may be cheaper and more environmental friendly because the biosynthesis of PHAs in plants is based only on water, mineral salts, CO2 and light. Additionally, plants are not capable of degrading PHAs as bacteria do, and extraction of PHAs from plant tissues is not always necessary. The main objective of this work is a review of possibilities of PHA biosynthesis in transgenic plants and presentation of general information on properties and potential application possibilities of these biopolymers. The possibility of syntheses and accumulation of PHA in several transgenic plants has been studied for some years. Many experiments were performed on model plant Arabidopsis thaliana, however, the research has also revealed a great potential of transgenic crop plants such as camelina (Camelina sativa), tobacco (Nicotiana tabacum) or sugarcane (Saccharum officinarum) as a good sources of PHAs. The highest level of PHAs accumulation in plants was achieved in transgenic A. thaliana (up to 40% of the dry weight of the leaf), and among crop plants in C. sativa (up to 20% of the dry weight of the seed). Increasing knowledge on PHAs permits expansion of the possibilities of these biopolymers use even at a low level of their accumulation in plant tissues.  相似文献   

20.
Polyhydroxyalkanoates (PHAs) belong to group of biopolymers that have in recent times received growing research interest as a result of being eco-friendly and close characteristics with petrochemical based plastics. Alternatives to utilization of synthetic plastics are being explored since synthetic plastics are non-recyclable and non-biodegradable in nature. One of the innovations of Green Chemistry is utilization of renewable feedstocks such as biomass to achieve sustainable development with future circular economy. Bio-based products are of great interest to sustainable development as a result of diminishing fossil fuel reserves and rising environmental concerns. This review summarizes the productions of PHAs from renewable feedstocks such as lignocellulose, crude glycerol, levulinic acid (LA), palm-oil mill effluents (POME) and waste oils. The production of bio-based polymers has become much more professional and differentiated in recent years. Presently, there are bio-based alternatives for practically every application, therefore, this review presents applications of PHA in bio-refinery, medical sectors, agriculture sector, construction industry, and in packaging industry. The cost analysis of PHA from renewable sources with commercially available ones and potential to attain circular economy were also stressed. The reasons for this shift are connected to the non-renewability of fossil-based resources, the deteriorating environmental impacts, and the lack of biodegradability of the petroleum-produced materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号