首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Metabolic engineering of osmoprotectant accumulation in plants.   总被引:11,自引:0,他引:11  
Drought and salinity are among the worst scourges of agriculture. One effective mechanism to reduce damage from these stresses is the accumulation of high intracellular levels of osmoprotectant compounds. These compounds include proline, ectoine, betaines, polyols, and trehalose and have evolved in many different organisms. Since some crop plants have low levels of these osmoprotectants or none at all, engineering osmoprotectant biosynthesis pathways is a potential way to improve stress tolerance. First-generation engineering work--much of it with single genes--has successfully introduced osmoprotectant pathways into plants that lack them naturally, and this has often improved stress tolerance. However, the engineered osmoprotectant levels are generally low and the increases in tolerance commensurately small. To get beyond trace levels of osmoprotectants and marginal tolerance increments we need to use flux measurements to diagnose what limits osmoprotectant levels in engineered plants and to use iterative cycles of engineering to overcome these limitations.  相似文献   

2.
Agriculture productivity is severely hampered by soil salinity, drought and other environmental stresses. Studies on stress-resistant plants (halophytes, xerophytes, accumulating plants for specific toxic ions) have illuminated some mechanisms of stress tolerance in plants at metabolic or molecular levels, which gave some clues on how to genetically engineer stress-tolerant crops. With the isolation of more stress-responsive genes, genetic engineering with modified expression of stress responsive genes may be an effective way to produce stress-tolerant crops. In the present report, two genes (PEAMT and BADH) encoding the corresponding key enzymes for choline and glycine betaine (an important osmoprotectant) biosynthesis in plants were isolated in oilseed rape, an important oil crop in the world. Effects of salt stress on their expression were studied with quantitative PCR and their potential use in the genetic engineering of oilseed rape was discussed.  相似文献   

3.
4.
5.
6.
Tomato is one of the most often cultivated vegetable species worldwide. Due to the anti-oxidative and anti-cancer properties of lycopene, tomato consumption as well as production is still increasing. However, its productivity is impaired by a wide range of abiotic stresses, and the establishment of stress-tolerant crops is a key challenge for agricultural biotechnology. Until now, a few genetic approaches have been used to achieve stress tolerance in cultivated tomato plants. Such achievements are based on current knowledge concerning plant adaptation. The presence of adverse environmental factors like extreme temperatures, salinity or drought cause definite biochemical and physiological consequences. Mostly, these are the changes in the metabolic pathways, the expression of stress-inducible genes or the accumulation of low-molecular compounds that play a crucial role in maintaining the plasticity of reactions. The biotechnological methods used to modify tomato to produce “upgraded” plants are based on introgression of several genes coding enzymes known to mitigate stress or genes contributing to signalling and diverse regulatory pathways. Here, we present an overview of the most often chosen target sequences/molecules that are genetically delivered or engineered to obtain tolerance to environmental constraints. Since adverse conditions cause interrelated stress responses, it is the tolerance molecular players that are consecutively presented in this paper rather than the typically reviewed division of stress types.  相似文献   

7.
Improving yield, nutritional value and tolerance to abiotic stress are major targets of current breeding and biotechnological approaches that aim at increasing crop production and ensuring food security. Metabolic engineering of carotenoids, the precursor of vitamin-A and plant hormones that regulate plant growth and response to adverse growth conditions, has been mainly focusing on provitamin A biofortification or the production of high-value carotenoids. Here, we show that the introduction of a single gene of the carotenoid biosynthetic pathway in different tomato cultivars induced profound metabolic alterations in carotenoid, apocarotenoid and phytohormones pathways. Alterations in isoprenoid- (abscisic acid, gibberellins, cytokinins) and non-isoprenoid (auxin and jasmonic acid) derived hormones together with enhanced xanthophyll content influenced biomass partitioning and abiotic stress tolerance (high light, salt, and drought), and it caused an up to 77% fruit yield increase and enhanced fruit's provitamin A content. In addition, metabolic and hormonal changes led to accumulation of key primary metabolites (e.g. osmoprotectants and antiaging agents) contributing with enhanced abiotic stress tolerance and fruit shelf life. Our findings pave the way for developing a new generation of crops that combine high productivity and increased nutritional value with the capability to cope with climate change-related environmental challenges.  相似文献   

8.
Abiotic stress conditions are the major limitations in modern agriculture. Although many genes associated with plant response(s) to abiotic stresses have been indentified and used to generate stress tolerant plants, the success in producing stress-tolerant crops is limited. New technologies are providing opportunities to generate stress tolerant crops. Biotechnological approaches that emphasize the development of transgenic crops under conditions that mimic the field situation and focus on the plant reproductive stage will significantly improve the opportunities of producing stress tolerant crops. Here, we highlight recent advances and discuss the limitations that hinder the fast integration of transgenic crops into agriculture and suggest possible research directions. This article is part of a Special Issue entitled: Plant gene regulation in response to abiotic stress.  相似文献   

9.
Abiotic stress is a major limiting factor in crop production. Physiological comparisons between contrasting abiotic stress-tolerant genotypes will improve understanding of stress-tolerant mechanisms. Rice seedlings (S3 stage) of a chilling-tolerant (CT) genotype (CT6748-8-CA-17) and a chilling-sensitive (CS) genotype (INIAP12) were subjected to abiotic stresses including chilling (13/12 degrees C), salt (100mM NaCl), and osmotic (200mM mannitol). Measures of physiological response to the stresses included changes in stress-related sugars, oxidative products and protective enzymes, parameters that could be used as possible markers for selection of improved tolerant varieties. Metabolite analyses showed that the two genotypes responded differently to different stresses. Genotype survival under chilling-stress was as expected, however, CT was more sensitive to salt stress than the CS genotype. The CT genotype was able to maintain membrane integrity better than CS, perhaps by reduction of lipid peroxidation via increased levels of antioxidant enzymes during chilling stress. This genotype accumulated sugars in response to stress, but the accumulation was usually less than in the CS genotype. Chill-stressed CT accumulated galactose and raffinose whereas these saccharides declined in CS. On the other hand, the tolerance mechanism in the more salt- and water-deficit-tolerant CS may be associated with accumulation of osmoprotectants such as glucose, trehalose and mannitol.  相似文献   

10.
11.
Metabolic engineering for betaine accumulation in microbes and plants   总被引:1,自引:0,他引:1  
Plants accumulate a variety of osmoprotectants that improve their ability to combat abiotic stresses. Among them, betaine appears to play an important role in conferring resistance to stresses. Betaine is synthesized via either choline oxidation or glycine methylation. An increased betaine level in transgenic plants is one of the potential strategies to generate stress-tolerant crop plants. Here, we showed that an exogenous supply of serine or glycine to a halotolerant cyanobacterium Aphanothece halophytica, which synthesizes betaine from glycine by a three-step methylation, elevated intracellular accumulation of betaine under salt stress. The gene encoding 3-phosphoglycerate dehydrogenase (PGDH), which catalyzes the first step of the phosphorylated pathway of serine biosynthesis, was isolated from A. halophytica. Expression of the Aphanothece PGDH gene in Escherichia coli caused an increase in levels of betaine as well as glycine and serine. Expression of the Aphanothece PGDH gene in Arabidopsis plants, in which the betaine synthetic pathway was introduced via glycine methylation, further increased betaine levels and improved the stress tolerance. These results demonstrate that PGDH enhances the levels of betaine by providing the precursor serine for both choline oxidation and glycine methylation pathways.  相似文献   

12.
Osmolyte accumulation and release can protect cells from abiotic stresses. In Escherichia coli, known mechanisms mediate osmotic stress-induced accumulation of K+ glutamate, trehalose, or zwitterions like glycine betaine. Previous observations suggested that additional osmolyte accumulation mechanisms (OAMs) exist and their impacts may be abiotic stress specific. Derivatives of the uropathogenic strain CFT073 and the laboratory strain MG1655 lacking known OAMs were created. CFT073 grew without osmoprotectants in minimal medium with up to 0.9 M NaCl. CFT073 and its OAM-deficient derivative grew equally well in high- and low-osmolality urine pools. Urine-grown bacteria did not accumulate large amounts of known or novel osmolytes. Thus, CFT073 showed unusual osmotolerance and did not require osmolyte accumulation to grow in urine. Yeast extract and brain heart infusion stimulated growth of the OAM-deficient MG1655 derivative at high salinity. Neither known nor putative osmoprotectants did so. Glutamate and glutamine accumulated after growth with either organic mixture, and no novel osmolytes were detected. MG1655 derivatives retaining individual OAMs were created. Their abilities to mediate osmoprotection were compared at 15°C, 37°C without or with urea, and 42°C. Stress protection was not OAM specific, and variations in osmoprotectant effectiveness were similar under all conditions. Glycine betaine and dimethylsulfoniopropionate (DMSP) were the most effective. Trimethylamine-N-oxide (TMAO) was a weak osmoprotectant and a particularly effective urea protectant. The effectiveness of glycine betaine, TMAO, and proline as osmoprotectants correlated with their preferential exclusion from protein surfaces, not with their propensity to prevent protein denaturation. Thus, their effectiveness as stress protectants correlated with their ability to rehydrate the cytoplasm.  相似文献   

13.
Providing sufficient food to burgeoning population from the steadily shrinking arable land seems to be very difficult in near future and is one of the foremost challenges for plant scientists. In addition, there are several biotic and abiotic stresses which frequently encounter crop plants during various stages of life cycle, resulting in considerable yield losses. Environmental stresses, including drought, flooding, salinity, temperature (both low and high), high radiation, and xenobiotics induce toxicity, membrane damage, excessive reactive oxygen species (ROS) production, reduced photosynthesis, and altered nutrient acquisition. Several indigenous defence mechanisms (physiological and molecular) are triggered in plants on exposure to environmental cues. Enhancement of resistance of crop plants to environmental stresses has been the topic of prime interest for agriculturalists and plant scientists since long. Development of water and salinity stress-tolerant crops through genetic engineering provides an avenue towards the reclamation of farmlands that have been lost due to salinity and lack of irrigation water/rainfall. Understanding the complexity of stress tolerance mechanisms in orthodox or model plants at the genetic and molecular levels improves feasibility of enhancing tolerance of sensitive crop plants.  相似文献   

14.
油菜(Brassica napus L.)是我国的主要油料作物之一,在生长发育过程中经常受到干旱、高温、高盐和营养缺乏等非生物胁迫。这些胁迫通常会阻碍油菜的生长发育,导致品质和产量下降。近年来,快速发展的高通量蛋白质组学技术为揭示油菜胁迫响应分子机制提供了新线索。本文综合分析了油菜不同组织/器官(如:叶片、根、下胚轴和种子)在响应盐、高温、干旱、草酸和缺素(磷、硫和硼)等逆境过程中675种蛋白质的丰度变化特征,揭示了其胁迫应答机制,主要包括:(1)通过G蛋白介导的信号通路感知与传递胁迫信号;(2)通过改变参与糖类与能量代谢相关酶的丰度调节代谢水平;(3)通过叶绿素合成的变化调节光合作用;(4)调节转录因子、蛋白质合成与命运相关蛋白质的丰度,从而在转录、翻译以及翻译后修饰等水平上应答逆境;(5)通过调节膜联蛋白、V型H+-ATP酶等质膜蛋白质,促进细胞内物质吸收与转运;(6)通过细胞骨架动态重塑保持正常细胞结构;(7)利用调节抗氧化酶系统清除活性氧,并通过合成多种防御物质减轻细胞受到的伤害。本综述为解析油菜逆境应答网络体系中的关键调控及代谢通路的变化提供了重要信息。  相似文献   

15.
Glycine betaine is known to be the preferred osmoprotectant in many bacteria, and glycine betaine accumulation has also been correlated with increased cold tolerance. Trehalose is often a minor osmoprotectant in bacteria and it is a major determinant for desiccation tolerance in many so-called anhydrobiotic organisms such as baker's yeast(Saccharomyces cerevisiae). Escherichia coli has two pathways for synthesis of these protective molecules; i.e., a two-step conversion of UDP-glucose and glucose-6-phosphate to trehalose and a two-step oxidation of externally-supplied choline to glycine betaine. The genes governing the choline-to-glycine betaine pathway have been studied inE. coli and several other bacteria and higher plants. The genes governing UDP-glucose-dependent trehalose synthesis have been studied inE. coli andS. cerevisiae. Because of their well-documented function in stress protection, glycine betaine and trehalose have been identified as targets for metabolic engineering of stress tolerance. Examples of this experimental approach include the expression of theE. coli betA andArthrobacter globiformis codA genes for glycine betaine synthesis in plants and distantly related bacteria, and the expression of theE. coli otsA and yeastTPS1 genes for trehalose synthesis in plants. The published data show that glycine betaine synthesis protects transgenic plants and phototrophic bacteria against stress caused by salt and cold. Trehalose synthesis has been reported to confer increased drought tolerance in transgenic plants, but it causes negative side effects which is of concern. Thus, the much-used model organismE. coli has now become a gene resource for metabolic engineering of stress tolerance.  相似文献   

16.
17.
The development of rhizobial inoculants with increased resistance to abiotic stress is critical to mitigating the challenges related to climate change. This study aims at developing a soybean stress-tolerant Bradyrhizobium inoculant to be used under the mixed stress conditions of acidity, high temperature, and drought. Six isolates of Bradyrhizobium with high symbiotic performance on soybean were tested to determine their growth or survival abilities under in vitro conditions. The representative stress-tolerant Bradyrhizobium isolates 184, 188, and 194 were selected to test their ability to promote soybean growth under stress conditions compared to the type strain Bradyrhizobium diazoefficiens USDA110. The plant experiment indicated that isolate 194 performed better in symbiosis with soybean than other Bradyrhizobium strains under stress conditions. Based on the stress tolerance index, soybeans inoculated with isolate 194 showed a high growth performance and significantly better nodulation competition ability than USDA110 under several stress conditions. Interestingly, supplementation of sucrose in the culture medium significantly enhances the survival of the isolate and leads to improved plant biomass under various stress conditions. Analysis of the intra-cellular sugars of isolate 194 supplemented with sucrose showed the accumulation of compatible solutes, such as trehalose and glycerol, that may act as osmoprotectants. This study indicates that inoculation of stress-tolerant Bradyrhizobium together with sucrose supplementation in a medium could enhance bacterial survival and symbiosis efficiency under stress conditions. Although it can be applied for inoculant production, this strategy requires validation of its performance in field conditions before adopting this technology.  相似文献   

18.
Engineering salt tolerance in plants   总被引:32,自引:0,他引:32  
Recent progress has been made in the identification and characterization of the mechanisms that allow plants to tolerate high salt concentrations. The understanding of metabolic fluxes and the main constraints for the production of compatible solutes (i.e. feedback inhibition and the limitation of substrate supply) open up the possibility of genetically engineering entire pathways that could lead to the production of osmoprotectants. This, together with the identification of the different sodium transporters (in particular vacuolar and plasma membrane Na(+)/H(+) antiporters) that could provide the needed ion homeostasis during salt stress, opens the possibility of engineering crop plants with improved salt tolerance.  相似文献   

19.
Turgrfass used on landscapes, parks, sports fields, and golf courses has significant ecological, environmental, and economic impacts. The economic value of seed production of turfgrasses is second to hybrid corn. The land area cultivated with turfgrass is increasing due to rapid urban development. Turfgrass is often subjected to various abiotic stresses, which cause declines in aesthetic quality, functionality and seed yield. Among abiotic stresses, drought, salinity, heat, and low temperature are the most common detrimental factors for turfgrass growth in various regions. Thorough understanding of mechanisms of turfgrass stress responses is vital for the development of superior stress-tolerant germplasm through breeding and biotechnology. Significant progress has been made in turfgrass stress physiology and molecular biology in recent decades, but research for turfgrasses generally lags behind that of the major Poaceae crops, particularly at the molecular and genomic levels. This review focuses on research advances in turfgrass stress physiology and provides an overview of limited information on gene discovery, genetic transformation, and molecular marker development for improving stress tolerance, with emphasis on drought, salinity, heat, and low temperature stress. Major growth and physiological traits associated with these stresses, as well as metabolic and molecular factors regulating various traits for turfgrass tolerance to each stress are discussed. Future research at the systems biology level and through genomic sequencing is paramount for further insights on fundamental mechanisms of turfgrass stress tolerance and for improving turfgrass tolerance to various environmental stresses.  相似文献   

20.
Abiotic stress has become a challenge to food security due to occurrences of climate change and environmental degradation. Plants initiate molecular, cellular and physiological changes to respond and adapt to various types of abiotic stress. Understanding of plant response mechanisms will aid in strategies aimed at improving stress tolerance in crop plants. One of the most common and early symptoms associated with these stresses is the disturbance in plant–water homeostasis, which is regulated by a group of proteins called “aquaporins”. Aquaporins constitute a small family of proteins which are classified further on the basis of their localization, such as plasma membrane intrinsic proteins, tonoplast intrinsic proteins, nodulin26-like intrinsic proteins (initially identified in symbiosomes of legumes but also found in the plasma membrane and endoplasmic reticulum), small basic intrinsic proteins localized in ER (endoplasmic reticulum) and X intrinsic proteins present in plasma membrane. Apart from water, aquaporins are also known to transport CO2, H2O2, urea, ammonia, silicic acid, arsenite and wide range of small uncharged solutes. Besides, aquaporins also function to modulate abiotic stress-induced signaling. Such kind of versatile functions has made aquaporins a suitable candidate for development of transgenic plants with increased tolerance toward different abiotic stress. Toward this endeavor, the present review describes the versatile functions of aquaporins in water uptake, nutrient balancing, long-distance signal transfer, nutrient/heavy metal acquisition and seed development. Various functional genomic studies showing the potential of specific aquaporin isoforms for enhancing plant abiotic stress tolerance are summarized and future research directions are given to design stress-tolerant crops.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号