首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
CD and uv absorption data showed that high molecular weight poly(dA-dT) . poly(dA-dT), at 298 K, undergoes an acid-induced transition from B-double helix to random coil in NaCl solutions of different concentrations, ranging from 0.005 to 0.600M. Similarly, titration of the polynucleotide with a strong base causes duplex-to-single strands transition. The base- and acid-induced transitions were both reversible by back-titration (with an acid or, respectively, with a base): the apparent pKa were the same in both directions. However, the number of protons per titratable site (adenine N1) required to reach half-denaturation was in great excess over the stoichiometric value; to a much larger extent, the same effect was observed also for the deprotonation of the N3H sites of thymine. Moreover, in the basic denaturation experiments, at low salt concentrations ([NaCl]< or =0.300M) less acid than calculated was needed to back-titrate the base excess to half-denaturation. Both effects could be qualitatively justified on the basis of the counterion condensation theory of polyelectrolytes and considering the energy barrier created by the negatively charged phosphodiester groups to the penetration of the OH- ions inside the double helix and the screening effect of the Na+ ions on such charges, in the deprotonation experiments.  相似文献   

2.
1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), a thermal breakdown product of a meperidine-like narcotic analgetic used by drug abusers as a synthetic heroin, causes Parkinsonian symptoms in humans and degeneration of the substantia nigra in monkeys. MPTP is oxidized by brain mitochondrial preparations in a process which is blocked by deprenyl and pargyline, implying catalysis by monoamine oxidase B. The present paper demonstrates that pure MAO B isolated from beef liver oxidizes MPTP 38% as fast as benzylamine with a comparable Km value. Additionally, MAO A, isolated from human placenta, oxidizes MPTP to the same product at about 12% of the rate of kynuramine, again with a comparable Km value. The latter reaction is blocked by clorgyline. Both forms of MAO are progressively inactivated by MPTP by a process which follows first order kinetics. This progressive inactivation and the fact that the activity of MAO B is not significantly regenerated following gel exclusion chromatography suggest the formation of a covalent adduct with enzyme. Thus, MPTP appears to be a suicide inactivator of MAO.  相似文献   

3.
The equilibria and kinetics of the interactions of proflavine (PR) and its platinum-containing derivative [PtCl(tmen)(2)HNC(13)H(7)(NHCH(2)CH(2))(2)](+) (PRPt) with double-stranded poly(A) have been investigated by spectrophotometry and Joule temperature-jump relaxation at ionic strength 0.1 M, 25 degrees C, and pH 5.2. Spectrophotometric measurements indicate that base-dye interactions are prevailing. T-jump experiments with polarized light showed that effects due to field-induced alignment could be neglected. Both of the investigated systems display two relaxation effects. The kinetic features of the reaction are discussed in terms of a two-step series mechanism in which a precursor complex DS(I) is formed in the fast step, which is then converted to a final complex in the slow step. The rate constants of the fast step are k(1) = (2.5 +/- 0.4) x 10(6) M(-1) s(-1), k(-1) = (2.4 +/- 0.1) x 10(3) s(-1) for poly(A)-PR and k(1) = (2.3 +/- 0.1) x 10(6) M(-1) s(-1), k(-1) = (1.6 +/- 0.2) x 10(3) s(-1) for poly(A)-PRPt. The rate constants for the slow step are k(2) = (4.5 +/- 0.5) x 10(2) s(-1), k(-2) = (1.7 +/- 0.1) x 10(2) s(-1) for poly(A)-PR and k(2) = 9.7 +/- 1.2 s(-1), k(-2) = 10.6 +/- 0.2 s(-1) for poly(A)-PRPt. Spectrophotometric measurements yield for the equilibrium constants and site size the values K = (4.5 +/- 0.1) x 10(3) M(-1), n = 1.3 +/- 0.5 for poly(A)-PR and K = (2.9 +/- 0.1) x 10(3) M(-1), n = 2.3 +/- 0.6 for poly(A)-PRPt. The values of k(1) are similar and lower than expected for diffusion-limited reactions. The values of k(-1) are similar as well. It is suggested that the formation of DS(I) involves only the proflavine residues in both systems. In contrast, the values of k(2) and k(-2) in poly(A)-PRPt are much lower than in poly(A)-PR. The results suggest that in the complex DS(II) of poly(A)-PRPt both proflavine and platinum residues are intercalated. In addition, a very slow process was detected and ascribed to the covalent binding of Pt(II) to the adenine.  相似文献   

4.
Using CD measurements we show that the interaction of netropsin to poly(dA-dT).poly(dA-dT) involves two binding modes at low ionic strength. The first and second binding modes are distinguished by a defined shift of the CD maximum and the presence of characteristic isodichroic points in the long wavelength range from 313 nm to 325 nm. The first binding mode is independent of ionic strength and is primarily determined by specific interaction to dA.dT base pairs. Employing a netropsin derivative and different salt conditions it is demonstrated that ionic contacts are essential for the second binding mode. Other alternating duplexes and natural DNA also exhibit more or less a second step in the interaction with netropsin observable at high ratio of ligand per nucleotide. The second binding mode is absent for poly(dA).poly(dT). The presence of a two-step binding mechanism is also demonstrated in the complex formation of poly(dA-dT).poly(dA-dT) with the distamycin analog consisting of pentamethylpyrrolecarboxamide. While the binding mode I of netropsin is identical with its localization in the minor groove, for binding mode II we consider two alternative interpretations.  相似文献   

5.
The nonexchangeable base and sugar proton nmr resonances and the 260 and 278-nm uv-absorbance bands of the nucleic acid were utilized to monitor the temperature-dependent duplex-to-strand transition of the alternating purine–pyrimidine deoxyribopolynucleotide poly(dA-dT) in the absence and presence of ethidium bromide (EB) at phosphate/drug = 50, 28, and 15 and propidium diiodide (PI) at P/D = 50, 25, 15, 10, and 5 in 0.1 M salt between 50° and 100°C. The nmr and optical methods monitor a biphasic duplex-to strand transition for the drug–poly(dA-dT) complexes. We have monitored the dissociation of the drug from the complex at the ethidium bromide phenanthridine ring and side-chain proton nmr resonances and the propidium diiodide 494 and 535-nm uv-absorbance bands and demonstrate that dissociation of the drug corresponds to the higher temperature transition in the biphasic nucleic acid melting curves. The lower temperature cooperative transition is assigned to the opening of drug-free AT base-pair regions in the drug–poly(dA-dT) complex and exhibits an increase in transition midpoint and a decrease in cooperativity with increasing drug concentration. The higher temperature cooperative transition is assigned to the opening of AT base-pair regions centered about the bound drug in the complex and exhibits an increase in the transition midpoint on raising the drug concentration. The large upfield shifts of the phenanthridine ring (but not side chain) protons of ethidium bromide on complex formation demonstrate intercalation of the drug between base pairs of the poly(dA-dT) duplex. The nucleic acid base and sugar resonances of poly(dA-dT) in 0.1 M phosphate undergo chemical shift changes between 0° and 50°C indicative of premelting conformational transition(s).  相似文献   

6.
UV absorption data analysis has been used to evaluate equilibrium constants of the pH‐induced interaction of 2,2′‐Bipy with polyadenylnic‐polyuridylic acid in aqueous solution. The conditional probabilities hard model has been adopted in treatment of concentration diagrams calculated by the soft modelling‐based Multivariate Curve Resolution‐Alternating Least Squares approach. Intrinsic binding constant (lgKg = 1.93), and the cooperativity parameter (ω = 340), were calculated as the best fit. The plot of the experimental binding constant versus 2,2′‐Bipy equilibrium concentration shows two modes of ligand with polymer interactions. The equilibrium hard model correctly reproduced the binding constant variations observed in the experiment. The results indicated that ligand binding in two steps is governed by a cooperative process, that is, the enhancement of deprotonated structure stability. It would appear that proposed calculation approach can be used in future combined hard modelling theoretical and soft modelling experimental works. © 2013 Wiley Periodicals, Inc. Biopolymers 99:621–627, 2013.  相似文献   

7.
31P and 1H NMR studies indicate that double stranded poly(dA-dT) adopts an unusual structure in high-CsF solution, in which the dA residues occur in a unique geometry. This structure is different from the high-salt form of poly(dG-dC).  相似文献   

8.
The thermal denaturation of the synthetic high molecular weight double stranded polynucleotide poly(dA-dT) x poly(dA-dT) has been studied in aqueous buffered solution (Tris 1.0 mM; pH 7.8+/-0.2) in the presence of increasing concentrations of either Ni(2+) (borderline cation) or Cd(2+) (soft cation) at four different constant ionic strength values (NaCl), making use of UV and circular dichroism (CD) spectroscopies. The experimental results show that the B-type double helix of the polymer is stabilized against thermal denaturation in the presence of both cations at low concentrations, relative to the systems where only NaCl is present, in the same conditions of ionic strength and pH. The effect is more pronounced for Ni(2+) than for Cd(2+). At higher concentrations, both cations start to destabilize the double helix, with Cd cations inducing larger variations of T(m). In many cases, when denaturation starts, interstrand cross-linking occurs with formation of aggregates that precipitate.  相似文献   

9.
Poly(dA-dT).poly(dA-dT) structures in aqueous solutions with high NaCl concentrations and in the presence of Ni2+ ions have been studied with resonance Raman spectroscopy (RRS). In low water activity the effects of added 95 mM NiCl2 in solution stabilize the syn geometry of the purines and reorganize the water distribution via local interactions of Ni-water charged complexes with the adenine N7 position. It is shown that RRS provides good marker bands for a left-handed helix: i) a purine ring breathing mode around 630 cm-1 coupled to the deoxyribose vibration in the syn geometry, ii) a 1300-1340 cm-1 region characterizing local chemical interactions of the Ni2+ ions with the adenine N7 position, iii) lines at about 1483- and 1582 cm-1 correlated to the anti/syn reorientation of the adenine residues on B-Z structure transition, iv) marker bands of the thymidine carbonyl group couplings at 1680- and 1733 cm-1 due to the disposition of the thymidine residues in the Z helix specific geometry. Hence poly(dA-dT).poly(dA-dT) can adopt a Z form in solution. The Z form observed in alternate purine-pyrimidine sequences does not require G-C base pairs.  相似文献   

10.
A T-jump investigation of the binding of Cyan40 [3-methyl-2-(1,2,6-trimethyl-4(1H)pyridinylidenmethyl)-benzothiazolium ion] and CCyan2 [3-methyl-2-[2-methyl-3-(3-methyl-2(3H)-benzothiazolylidene)-1-propenyl]-benzothiazolium ion] with poly(dA-dT) x poly(dA-dT) and poly(dG-dC) x poly(dG-dC) is performed at I = 0.1M (NaCl), 25 degrees C and pH 7. Two kinetic effects are observed for both systems. The binding process is discussed in terms of the sequence D + P <==> P,D <==> PD(I) <==> PD(II), which leads first to fast formation of a precursor complex P,D and then to a partially intercalated complex PD(I) which converts to the fully intercalate complex PD(II). Concerning CCyan2 the rate parameters depend on the polymer nature and their analysis shows that in the case of poly(dG-dC) x poly(dG-dC) the most stable bound form is the fully intercalated complex PD(II), whereas in the case of poly(dA-dT) x poly(dA-dT) the partially intercalated complex PD(I) is the most stable species. Concerning Cyan40, the rate parameters remain unchanged on going from A-T to G-C indicating that this dye is unselective.  相似文献   

11.
S P Fodor  P A Starr  T G Spiro 《Biopolymers》1985,24(8):1493-1500
Raman spectra have been recorded for poly(dG-dT) · poly(dA-dC) and poly(dA-dT) · poly(dA-dT) in low salt and at high concentrations of CsF. Poly(dG-dT) · poly(dA-dC) shows no change in the 682-cm?1 guanine mode, demonstrating the absence of the Z-structure at high salt. The 790-cm?1 phosphodiester symmetric stretch, however, shifts up 5 cm?1 in 4.3M CsF, suggesting a slight conformational change, associated with ion binding or hydration changes. Poly(dA-dT) · poly(dA-dT) shows an additional broad band at 816 cm?1, attributed to the phosphodiester modes associated with the C3′-endo deoxyribose units in the alternating B-structure. In this case, both the 841- and the 816-cm?1 asymmetric phosphodiester stretches, associated with the C2′- and C3′-endo units, shift down on addition of CsF in a sequential manner. Correlation of this sequence with that previously observed for the two 31P-nmr resonances, establishes that the phosphodiester stretching frequencies depend on the conformation of the 5′-sugar, and not on the 3′-sugar.  相似文献   

12.
The alternative structures of the synthetic poly(amino2dA-dT) duplex have been studied using infrared spectroscopy in films and in solution (D2O and H2O) in the presence and in the absence of magnesium salt. In solution without magnesium salt, the polynucleotide exists in a B genus conformation with some of the sugar puckers possibly in the C3'-endo/anti geometry. In magnesium-containing solution (66 mM MgCl2), however, we report infrared spectra of Mg(2+)-poly(amino2dA-dT) which have characteristic marker bands of the A form. Film samples in 70% relative humidity (RH) give similar infrared spectra to those of the polynucleotide obtained using Mg2+. Thus, when analyzed in comparison with previously reported infrared spectra of other oligo and polynucleotides, our data show that double helical poly(amino2dA-dT) goes into the same (or very closely related) conformation in dehydrated films as in solutions containing Mg2+.  相似文献   

13.
Further direct evidences are given that a clear correlation exists between potentiometric and spectroscopic measurements in monitoring the poly(L-glutamic, acid) helix+ coil transtition. Specific Li+ ion poly (L -glUtamic acid) interactions have been observed, suresting that Li+ ions may exert a distinct destabilizing action on the helical conformation of the polyelectrolyte.  相似文献   

14.
Potentiometric titrations and some complementary optical rotation data are presented for solutions of poly(L - glutamic acid) (PGA) in several H2O–ethanol mixtures. The data allow the determination of the intrinsic pK (pK0), slope of the apparent. pK (pKapp), versus degree of ionization curves and of the enthalpy of ionization as a function of ethanol concentration. The variation of the degree of ionization at which the helix–coil transformation occurs with ethanol and temperature is also determined. Finally free energy, enthalpy, and intropy changes associated with the helix–coil transformation for the uncharged conformers are determined from the titration curves. The effect of the ethanol is to increase the stability of the helical conformation of PGA for both the charged and the uncharged forms of the polymer. The stabilization of the uncharged helix is essentially an entropic effect.  相似文献   

15.
1H-1H and 31P-1H nuclear Overhauser effects and 31P NMR spin-lattice relaxation times were measured for a synthetic DNA poly(dA-dT).poly(dA-dT) in a low-salt aqueous solution. The results have shown that all bases in the double helix are anti-orientated with respect to deoxyribose residues and that the sugar-phosphate backbone has an alternating architecture.  相似文献   

16.
Comparative 1H NMR and optical studies of the interaction between poly(dA-dT), ethidium bromide (Et) and ethidium dimer (Et2) in 0.7 M NaCl are reported as a function of the temperature. Denaturation of the complexes followed at both polynucleotide and drug levels leads to a biphasic melting process for poly(dA-dT) complexed with ethidium dimer (t1/2 = 75 degrees C; 93 degrees C) but a monophasic one in poly(dA-dT): ethidium bromide complex (t1/2 = 74 degrees C). In both cases drug signals exhibit monophasic thermal dependence (Et = 81 degrees C; Et2 = 95 degrees C). Evidence is presented showing that the ethidium dimer bisintercalates into poly(dA-dT) in high salt, based on the observation that i) dimer and monomer ring protons exhibit similar upfield shifts upon DNA binding, ii) upfield shifts of DNA sugar protons are twice as large with the dimer than with ethidium bromide. Comparison between native DNA fraction and bound drug fraction indicates that ethidium covers, n = 2.5-3 base pairs. The dimer bisintercalates and covers, n = 5.7 base pairs when the helix fraction is high but as the number of available sites decreases the binding mode changes and the drug monointercalates (n = 2.9).  相似文献   

17.
A highly homogeneous 145-base-pair fragment of double helical poly(dA-dT) . poly(dA-dT) was obtained by micrococcal nuclease digestion of a semisynthetic chromatin prepared from the nucleosome core histones (H2A, H2B, H3, H4) and the synthetic polydeoxyribonucleotide. In contrast to higher molecular weight alternating copolymers, this fragment displayed two resolved 31P NMR signals, separated by 24 Hz at 10.93 MHz. The two signals were of equal intensity at all temperatures less than the Tm for the fragment. Analyses of the possible origins for the two reasonances leads to the conclusion that the phosphodiester backbone of this DNA contains two distinct phosphorus environments, probably in an alternating array. We suggest that this may indicate the presence of sequence-dependent local variation in the helical structure of DNA in general.  相似文献   

18.
The temperature dependence of the Raman spectrum of poly(dA).poly(dT) (dA: deoxyadenosine; dT: thymidine), a model for DNA containing consecutive adenine.thymine (A.T) pairs, has been analyzed using a spectrometer of high spectral precision and sensitivity. Three temperature intervals are distinguished: (a) premelting (10 < t < 70 degrees C), in which the native double helix is structurally altered but not dissociated into single strands; (b) melting (70 < t < 80 degrees C), in which the duplex is dissociated into single strands; and (c) postmelting (80 < t degrees C), in which no significant structural change can be detected. The distinctive Raman difference signatures observed between 10 and 70 degrees C and between 70 and 80 degrees C are interpreted in terms of the structural changes specific to premelting and melting transitions, respectively. Premelting alters the low-temperature conformation of the deoxyribose-phosphate backbone and eliminates base hydrogen bonding that is distinct from canonical Watson-Crick hydrogen bonding; these premelting perturbations occur without disruption of base stacking. Conversely, melting eliminates canonical Watson-Crick pairing and base stacking. The results are compared with those reported previously on poly(dA-dT).poly(dA-dT), the DNA structure consisting of alternating A.T and T.A pairs (L. Movileanu, J. M. Benevides, and G. J. Thomas, Jr. Journal of Raman Spectroscopy, 1999, Vol. 30, pp. 637-649). Poly(dA).poly(dT) and poly(dA-dT).poly(dA-dT) exhibit strikingly dissimilar temperature-dependent Raman profiles prior to the onset of melting. However, the two duplexes exhibit very similar melting transitions, including the same Raman indicators of ruptured Watson-Crick pairing, base unstacking and collapse of backbone order. A detailed analysis of the data provides a comprehensive Raman assignment scheme for adenosine and thymidine residues of B-DNA, delineates Raman markers diagnostic of consecutive A.T and alternating A.T/T.A tracts of DNA, and identifies the distinct Raman difference signatures for premelting and melting transitions in the two types of sequences.  相似文献   

19.
20.
The thermal behavior of the synthetic, high molecular weight, double stranded polynucleotides poly(dA-dT).poly(dA-dT) [polyAT] and poly(dG-dC).poly(dG-dC) [polyGC] solubilized in the aqueous core of the quaternary water-in-oil cationic microemulsion CTAB|n-pentanol|n-hexane|water in the presence of increasing amounts of NiCl(2) at several constant ionic strength values (NaCl) has been studied by means of circular dichroism and electronic absorption spectroscopies. In the microemulsive medium, both polynucleotides show temperature-induced modifications that markedly vary with both Ni(II) concentration and ionic strength. An increase of temperature causes denaturation of the polyAT duplex at low nickel concentrations, while more complex CD spectral modifications are observed at higher nickel concentrations and ionic strengths. By contrast, thermal denaturation is never observed for polyGC. At low Ni(II) concentrations, the increase of temperature induces conformational transitions from B-DNA to Z-DNA form, or, more precisely, to left-handed helical structures. In some cases, at higher nickel concentrations, the CD spectra suggest the presence of Z'-type forms of the polynucleotide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号