首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Multiple roles for elastic fibers in the skin.   总被引:4,自引:0,他引:4  
Dermal elastic fibers are believed to have a primary role in providing elastic stretch and recoil to the skin. Here we compare the structural arrangement of dermal elastic fibers of chick skin and different animal species. Most elastic fibers in chick skin are derived from cells that line the feather follicle and/or smooth muscle that connects the pterial and apterial muscle bundles to feather follicles. Elastic fibers in the dermis of animals with single, primary hair follicles are derived from cells lining the hair follicle or from the ends of the pili muscle, which anchors the muscle to the matrix or to the hair follicle. Each follicle is interconnected with elastic fibers. Follicles of animals with primary and secondary (wool) hair follicles are also interconnected by elastic fibers, yet only the elastic fibers derived from the primary follicle are connected to each primary follicle. Only the primary hair follicles are connected to the pili muscle. Human skin, but not the skin of other primates, is significantly different from other animals with respect to elastic fiber organization and probably cell of origin. The data suggest that the primary role for elastic fibers in animals, with the possible exception of humans, is movement and/or placement of feathers or hair.  相似文献   

2.
The structural features of sinus hair follicles in Sorex unguiculatus were studied by macroscopic dissection, serial section light microscopy and electron microscopy. The shrew has about 540 sinus hairs regularly arranged on the snout. The maxillary nerves innervating them are extremely thick, while the optic nerves are very thin. Thus the follicle must be one of the most important sense organs in this animal. In the follicle the ring sinus is well-developed and the trabeculae of the cavernous sinus are reduced in number and thickness. The ring bulge is not a unified structure but a pair of bodies which consist of head, stalk and attachment plaque. It is characterized by the presence of numberous thick collagen fibrils (400 nm) and appears to be mechanically rigid. Lanceolate nerve terminals, free endings, Merkel cells with nerve terminals and unmyelinated fibers are observed, but encapsulated endings are lacking in and around the follicles. Straight lanceolate terminals on the posterior side of the follicle are thick and three-sided in cross section, while those on the anterior side are thin and two-sided. Free endings are located on the anterior side of the follicle. These and other findings are discussed on the basis of the assumption that the Sorex sinus hair follicle is more specialized as a vibrating system than in other mammals.  相似文献   

3.
Gross dissection, light microscopy, and transmission electron microscopy were used to generate a detailed understanding of the ovarian anatomy of the pipefish, Syngnathus scovelli. The ovary is a cylindrical tube bounded by an outer layer consisting of a smooth muscle wall and an inner layer of luminal epithelium, with follicles sandwiched between the two layers. A remarkable feature of this ovary is a sequential pattern of follicle development. This pattern begins at the germinal ridge with a gradient of follicles of increasing developmental age extending to the mature edge. The germinal ridge is an outpocketed region of the luminal epithelium containing early germinal cells and somatic prefollicular cells. Therefore, the germinal ridge and luminal epithelium share the same ovarian compartment and follicle formation occurs within this compartment. The mature edge is defined as the site of oocyte maturation and ovulation. The outer ovarian wall contains unmyelinated nerve fibers throughout. Longitudinally oriented unmyelinated nerves are also observed near the smooth muscle bundles associated with the mature edge. Oocytes near the mature edge are polarized such that the germinal vesicle (nucleus) is generally oriented toward the luminal epithelium. The sandwichlike organization of the ovary results in follicles that have a shared theca. An extensive lymphatic network is also interspersed among the follicles. Thus, the exceptional features of the pipefish ovary make it particularly well suited for the examination of early events in oogenesis. Specifically, we characterize pipefish folliculogenesis in detail.  相似文献   

4.
Tarantula venoms are a cocktail of proteins and peptides that have been increasingly studied in recent years. In contrast, less attention has been given to analyzing the structure of the paired cephalic glands that produce the venom. We have used light, electron, and confocal microscopy to study the organization and structure of the venom gland of the Brazilian tarantula Vitalius dubius. The chelicerae are hairy chitinous structures, each with a single curved hollow fang that opens via an orifice on the anterior surface. Internally, each chelicera contains striated muscle fiber bundles that control fang extension and retraction, and a cylindrical conical venom gland surrounded by a thick well-developed layer of obliquely arranged muscle fibers. Light microscopy of longitudinal and transverse sections showed that the gland secretory epithelium consists of a sponge-like network of slender epithelial cell processes with numerous bridges and interconnections that form lacunae containing secretion. This secretory epithelium is supported by a basement membrane containing elastic fibers. The entire epithelial structure of the venom-secreting cells is reinforced by a dense network of F-actin intermediate filaments, as shown by staining with phalloidin. Neural elements (axons and acetylcholinesterase activity) are also associated with the venom gland. Transmission electron microscopy of the epithelium revealed an ultrastructure typical of secretory cells, including abundant rough and smooth endoplasmic reticulum, an extensive Golgi apparatus, and numerous mitochondria.  相似文献   

5.
Summary The presence and distribution pattern of paramyosin have been examined in different invertebrate muscle cell types by means of Western blot analysis and electron microscopy immunogold labelling. the muscles studied were: transversely striated muscle with continuous Z lines (flight muscle fromDrosophila melanogaster), transversely striated muscle with discontinuous Z lines (heart muscle from the snailHelix aspersa), obliquely striated body wall muscle from the earthwormEisenia foetida, and smooth muscles (retractor muscle from the snail and pseudoheart outer muscular layer from the earthworm). Paramyosin-like immunoreactivity was localized in thick filaments of all muscles studied. Immunogold particle density was similar along the whole thick filament length in insect flight muscle but it predominated in filament tips of fusiform thick filaments in both snail heart and earthworm body wall musculature when these filaments were observed in longitudinal sections. In obliquely sectioned thick filaments, immunolabelling was more abundant at the sites where filaments disappeared from the section. These results agree with the notion that paramyosin extended along the whole filament length, but that it can only be immunolabelled when it is not covered by myosin. In all muscles examined, immunolabelling density was lower in cross-sectioned myofilaments than in longitudinally sectioned myofilaments. This suggests that paramyosin does not form a continuous filament. The results of a semiquantitative analysis of paramyosin-like immunoreactivity indicated that it was more abundant in striated than in smooth muscles, and that, within striated muscles, transversely striated muscles contain more paramyosin than obliquely striated muscles.  相似文献   

6.
Summary Smooth feather muscles (mm. pennati) consist of bundles of smooth muscle cells which are attached to the feather follicles by short elastic tendons. In addition, some muscle bundles are interrupted by elastic tendons. The elastic tendon is composed of longitudinally arranged elastic fibers which branch and wavy bundles of collagen fibrils. Smooth muscle cells of the muscle bundles are attached to each other by desmosome-like junctions and by fusion of the basal laminae. The cytoplasm of the muscle cells is characterized by conspicuous thick filaments and abundant thin and intermediate filaments. These are attached to band-like dense patches (dense bands) at the plasma membrane which are particularly broad at the tapering end of the muscle cell. The contact surface between smooth muscle cells and their elastic tendon is considerably increased (i) by deep finger-like invaginations and indentations located at the tapering muscle end, and (ii) by branching of the coarse elastic fibers into slender processes, which are attached to the richly folded surface of the muscle cell endings by peripheral microfibrils. This intimate interlocking closely resembles the myotendinous junctions in skeletal muscle. In addition to fibroblasts and fibrocytes, the myotendinous junction of the young growing chicks contains numerous so-called myofibroblasts, which are suggested to represent smooth muscle cells differentiating into fibroblasts of the developing tendon.Dedicated to Professor Dr. Helmut Leonhardt on the occasion of his 60th birthdaySupported by a grant from the Deutsche Forschungsgemeinschaft (Dr. 91/1)  相似文献   

7.
In the present study we examined muscle development throughout the complete larval cycle of the bivalve mollusc, Mytilus trossulus. An immunofluorescence technique and laser scanning confocal microscopy were used in order to study the organization of the muscle proteins (myosin, paramyosin, twitchin, and actin) and some neurotransmitters. The appearance of the muscle bundles lagged behind their nervous supply: the neuronal elements developed slightly earlier (by 2 h) than the muscle cells. The pioneer muscle cells forming a prototroch muscle ring were observed in a completed trochophore. We documented a well‐organized muscle system that consisted of the muscle ring transforming into three pairs of velar striated retractors in the early veliger. The striations were positive for all muscle proteins tested. Distribution of FMRFamide and serotonin (5‐HT) immunocytochemical staining relative to the muscle ring differed significantly: 5‐HT‐immunioreactive cells were situated in the center of the striated muscle ring, while Phe‐Met‐Arg‐Phe‐NH2 neuropeptide FMRFamid immunoreactive fibers were located in a distal part of this ring. Our data showed clearly that the muscle proteins and the neurotransmitters were co‐expressed in a coordinated fashion in a continuum during the early stages of the mussel development. Our study provides the first strong evidence that mussel larval metamorphosis is accompanied by a massive reorganization of striated muscles, followed by the development of smooth muscles capable of catch‐contraction.  相似文献   

8.
Summary The interstitium between smooth muscle cells in the media of the abdominal aorta of the chicken contains basement membranes, glycosaminoglycan, stout elastic fibers, extensive bundles of collagenous fibers, and a unique striated structure. In cross section, this striated, hexagonal structure resembles a honeycomb, each hexagon consisting of 6 isosceles triangles. Microtubule-like structures are present at each corner and center of a hexagon, and 3 delicate filaments are located equidistantly between putative microtubules. The periodicity evident in longitudinal section is the result of a constant repetition of microtubule-like elements. From staining with phosphotungstic acid it appears that the striated connective tissue structures are proteinacous and might serve as a reinforcing structure where smooth muscle cells are separated by dilated extracellular spaces.  相似文献   

9.
C R Piffer 《Acta anatomica》1979,105(2):121-133
The author studied the structure of the tissue components of the tunicae of the terminal segment of the sigmoid sinus, particularly at the level of the transition between the sigmoid sinus, the superior bulb of the jugular vein and the first portion of the human internal jugular vein; it was established that the transition between the sigmoid sinus and the first portion of the internal jugular vein occupies the whole extension of the superior bulb of the jugular vein up to the inferior third of the first portion of this vessel. These vascular walls exhibit a structure similar to that of the dura, i.e. the tunica adventitia is formed by fascicles of collagenic fibers which describe discontinuous spirals, more open proximal to the beginning of the first portion of the internal jugular vein. Approximately in the inferior third of the first portion of the internal jugular vein, there appear fascicles of smooth muscle fibers which are arranged similarly to those of the venous walls. The tunica intima of these vascular segments exhibits an endothelium resting on a network of elastic fibers which may play the role of an internal elastic lamina. From the bony border of the jugular foramen there originates a connective system whose fascicles of collagenic and elastic fibers incorporate to the wall of the internal jugular vein after describing a stretch in spiral around the vascular lumen.  相似文献   

10.
The interaction of actin and myosin powers striated and smooth muscles and some other types of cell motility. Due to its highly ordered structure, skeletal muscle is a very convenient object for studying the general mechanism of the actin-myosin molecular motor. The history of investigation of the actin-myosin motor is briefly described. Modern concepts and data obtained with different techniques including protein crystallography, electron microscopy, biochemistry, and protein engineering are reviewed. Particular attention is given to X-ray diffraction studies of intact muscles and single muscle fibers with permeabilized membrane as they give insight into structural changes that underlie force generation and work production by the motor. Time-resolved low-angle X-ray diffraction on contracting muscle fibers using modern synchrotron radiation sources is used to follow movement of myosin heads with unique time and spatial resolution under near physiological conditions.  相似文献   

11.
In the present study VIP-immunoreactive (IR) nerve fibers were found in the skin of several mammalian species (cat, dog, pig and man). They supplied predominantly the arteries and arterial portions of arteriovenous anastomoses. Far fewer VIP-IR nerve fibers innervated veins and arterioles. Capillaries were supplied by VIP-IR fibers only in sweat and Meibomian glands. Some non-vascular VIP-IR nerve fibers were seen in contact with dermal smooth muscle strands. In eccrine sweat glands and in Meibomian glands VIP-IR fibers were targeting glandular cells. In addition, VIP-IR nerve fibers innervated the upper parts of facial hair follicles. In non-neuronal localization VIP-IR occurred in Merkel cells in all species and sites, while the intraepidermal axons consistently were not VIP-IR. Radioimmunoassay of different skin regions of cats also suggested both a neuronal and a Merkel cell origin of VIP-IR. Under physiological conditions VIP which is released from its neuronal and non-neuronal cutaneous pools may have an impact on thermoregulation by influencing blood flow and sweat production. It may also modulate axon-endings in Merkel cell-axon complexes and hair follicle receptors. Under pathological conditions an enhanced release of cutaneous VIP may lead to local inflammatory processes partly mediated via release of histamine from cutaneous mast cells.  相似文献   

12.
SUMMARY Myogenesis of two representatives of Platyhelminthes, Stylostomum sanjuania and Pseudoceros canadensis, was followed from egg deposition until well‐differentiated free‐swimming larval stages, using F‐actin staining and confocal laserscanning microscopy. Zonulae adhaerentes are the only structures to stain before 50% of development between egg deposition and hatching in S. sanjuania, and before 67% of development in P. canadenis. Subsequently, irregular fibers appear in the embryo, followed by a helicoid muscle close to the apical pole. Three longitudinal muscle pairs form, of which the dorsal pair remains more pronounced than the others. Gradually, new muscles form by branching or from double‐stranded muscle zones adjacent to existing muscles. This results in an elaborate muscular bodywall that consists of a single helicoid muscle as well as multiple circular and longitudinal muscles. Diverse retractor muscles insert at the sphincter muscles around the stomodeum. The overall arrangement and formation mode of the larval musculature appears very similar in both species, although only P. canadensis has a primary circular muscle posterior to the helicoid muscle. Muscle formation in the apical region of the embryo precedes that at the abapical pole and the primary longitudinal muscles form slightly later than the primary circular muscles. Myogenesis and larval myoanatomy appears highly conserved among polyclad flatworms, but differs significantly from that of other trochozoan clades. Our data suggest that the larval muscular ground pattern of polyclad larvae comprises a bodywall consisting of a helicoid muscle, circular and longitudinal muscles, several retractor muscles, and sphincter muscles around the stomodeum.  相似文献   

13.
Nakamori C  Shiina T  Shimizu Y 《Life sciences》2012,90(13-14):495-501
AimsReplacement of smooth muscles by striated muscles occurs in the esophagus during the early postnatal period. The aim of this study was to clarify postnatal changes in vagal control of esophageal muscle contractions in rats.Main methodsAn isolated segment of the neonatal rat esophagus was placed in an organ bath and the contractile responses were recorded using a force transducer.Key findingsElectrical stimulation of the vagus trunk evoked a biphasic contractile response in the neonatal esophageal segment. The first and second components of the contractions were inhibited by α-bungarotoxin and atropine, respectively. Ganglion blockers, hexamethonium and mecamylamine, did not affect vagally mediated contractions. The first component gradually enlarged with age in days, whereas the second component declined during the first week after birth. Application of d-tubocurarine or acetylcholine caused an apparent contraction in the esophageal striated muscle at postnatal day 0, but responses to these drugs were not observed at 1 week after birth. The neonatal esophagus expressed the γ-subunit of nicotinic acetylcholine receptors. In contrast, the ε-subunit was dominantly expressed in the adult esophagus.SignificanceThe vagus nerves directly innervate both the esophageal striated muscles and smooth muscles in the early neonatal period. During the process of muscle rearrangement, the property of the striated muscles is altered substantially. The specific features of striated muscles in the neonatal rat esophagus might compensate for immature formation of neuromuscular junctions. Unsuccessful conversion of the striated muscle property during postnatal muscle rearrangement would be related to disorders of esophageal motility.  相似文献   

14.
A confocal laser microscope was used to examine the distribution pattern of actin bundles in whole-mounts of human hair follicles stained with fluorescently labeled phalloidin. Actin bundles were found exclusively in the epithelial outer root sheath of the lower and middle portions of the follicle. In the growth stage, the lower follicle was characterized by well-developed actin bundles arranged circumferentially in the innermost and outermost cell layers of the outer root sheath. Actin bundles in the innermost cells were aligned end-to-end so that they formed complete circular bands surrounding the inner root sheath. In the outermost cells, actin bundles ran underneath the basal plasma membrane to which they attached at both ends. In contrast, in the quiescent stage, actin bundles in the lower follicle were disposed radially toward the follicle surface where they terminated perpendicular to the basal plasma membrane. In the middle follicle, circumferential actin bundles were found only in the intermediate layer of the outer root sheath throughout the hair cycle. Immunofluorescent anti-myosin and anti-α-actinin staining showed a striated pattern along actin bundles. Vinculin was localized at both ends of actin bundles, corresponding to the cell-to-cell or cell-to-substrate adherens junctions. Glycerinated follicles changed in shape on the addition of MgATP, suggesting a contraction of actin bundles. From these observations, we conclude that actin bundles in the hair follicle are comparable to stress fibers and that they serve as a tensile scaffold for the growth and integrity of the follicle. Received: 6 May 1995 / Accepted: 25 October 1995  相似文献   

15.
Summary The structure of the snout and tactile hair system of the common shrew (Sorex araneus) and the distribution of cholinesterase and alkaline phosphatase activity were studied. The structure of the vibrissae is exceptional compared with that of other mammals studied. Differences are the attachment system of hair follicle to the capsule, the impossibility of dividing the blood sinus clearly into cavernous sinus and ring sinus, the lack of continuous ring-wulst, clear constriction in the outer root sheath at the neck of hair follicle and some specialized structures connected with this. Alkaline phosphatase was not found in the nervous structures of the vibrissae but cholinesterase activity occurs at least in two different structures upon or in the outer root sheath of the hair follicle. The role of these structures and the significance of vibrissae to the shrew is discussed.  相似文献   

16.
丹顶鹤胆囊的显微观察   总被引:4,自引:1,他引:3  
应用光镜及透射电镜观察一例成体雄性丹顶鹤胆囊。结果表明,丹顶鹤胆囊粘粘膜、肌层和外膜三部分组成。粘膜上皮高柱状、游离端有密集排列的微绒毛,胞质面端有许多粘液颗粒,说明上皮细胞具有吸收功能并可分泌粘液。  相似文献   

17.
The Regulation of Catch in Molluscan Muscle   总被引:4,自引:0,他引:4  
Molluscan catch muscles are smooth muscles. As with mammalian smooth muscles, there is no transverse ordering of filaments or dense bodies. In contrast to mammalian smooth muscles, two size ranges of filaments are present. The thick filaments are long as well as large in diameter and contain paramyosin. The thin filaments contain actin and appear to run into and join the dense bodies. Vesicles are present which may be part of a sarcoplasmic reticulum. Neural activation of contraction in Mytilus muscle is similar to that observed in mammalian smooth muscles, and in some respects to frog striated muscle. The relaxing nerves, which reduce catch, are unique to catch muscles. 5-Hydroxytryptamine, which appears to mediate relaxation, specifically blocks catch tension but increases the ability of the muscle to fire spikes. It is speculated that Mytilus muscle actomyosin is activated by a Ca++-releasing mechanism, and that 5-hydroxytryptamine may reduce catch and increase excitability by influencing the rate of removal of intracellular free Ca++.  相似文献   

18.
Zusammenfassung Die Wandstruktur der großen Arterien des Schwans, der Drossel und des Stars wurde licht- und elektronenoptisch untersucht und eine Einteilung in elastische, muskuläre und Übergangsgefäße getroffen.Die Media der elastischen Gefäße besteht aus muskulo-elastischen Zylindersegmenten, die mit breiten Bindegewebslagen alternieren. Die Zylindersegmente bestehen aus plattenförmigen Lagen glatter Muskelzellen, die von elastischen Fasernetzen flankiert werden. Diese Zylindersegmente beginnen und enden in den Bindegewebslagen stark gegeneinander versetzt, so daß ein kulissenartig einander überlappendes Plattensystem entsteht. Die Bindegewebslagen bestehen neben kollagenen Fasern und Fibrozyten aus mehreren konzentrischen Lagen elastischer Fasernetze. Die elastischen Netze sind durch Verbindungsfasern zu einem dreidimensionalem, die ganze Gefäßwand durchsetzenden elastischen System verknüpft. In den Übergangsgefäßen sind die Bindegewebslagen zwischen den muskulo-elastischen Systemen weitgehend reduziert.Bindegewebige und muskuläre Wandbestandteile sind im muskulären Vogelgefäß weitgehend voneinander getrennt. Die Media besteht aus glatten Muskelzellen, die von elastischen Netzen zu Schichten zusammengefaßt werden, die Adventitia aus kollagenen Fasern, Fibrozyten und konzentrischen Lagen elastischer Fasernetze. Die glatten Gefäßmuskelzellen sind durch elastische Fasernetze zu muskulo-elastischen Einheiten zusammengefaßt. Die mechanischen Verknüpfungspunkte zwischen Muskelzellen und elastischen Fasern sind über die ganze Zelloberfläche verteilt.Die Gefäßbautypen sind durch eine Wandstärken-Lumenrelation gekennzeichnet. Sie beträgt im elastischen Gefäß 1:5 bis 1:6, im muskulären Gefäß 1:14 bis 1:16.
The wall structure of large arteries in birds
Summary A classification of large arteries (elastic, muscular and intermediate type) in mute swan, trush and starling was undertaken with light and electron microscopy.The tunica media of elastic arteries consists of musculo-elastic cylindrical segments alternating with wide connective tissue layers. The former consists of smooth muscle cell layers, which are adjoined by a network of elastic fibers. These musculo-elastic cylinder segments overlap incompletely. The connective tissue layers consist of networks of elastic fibers concentrically arranged in addition to collagen fibers and fibrocytes. The elastic networks are joined by connecting elastic fibers, thus forming a three-dimensionalsystem. In the intermediate type of arteries the connective tissue layers between the musculo-elastic systems are greatly reduced.Connective tissue and muscular components of the wall of muscular arteries are almost completely separated. The tunica media is composed of smooth muscle cells sandwiched by networks of elastic fibers. The tunica adventitia is formed by concentric networks of elastic fibers, collagen fibers and fibrocytes.The arterial smooth muscle cells, together with networks of elastic fibers, form a musculoelastic unit. The points of mechanical attachment between smooth muscle cells and elastic fibers are scattered all over the cellular surface. The arterial types described above are characterized by a well-defined wall thickness/lumen ratio. This ratio is of the order of 1:5 to 1:6 for elastic arteries and 1:14 to 1:16 for muscular arteries.
Medizinische Dissertation unter Anleitung von Prof. Dr. Dr. H.-R. Duncker.  相似文献   

19.
The carotid arterial system of the porcupine Hysitrix cristota has been studied using light and electron microscopy. Emphasis has been placed on describing the structure and innervation of the carotid sinus area located at the origin of the internal carotid artery. The sinus wall has a largely elastic structure and a reduced smooth muscle content. A functional relationship is proposed between the elastic structure of the sinus wall and baroreceptor mechanisms.  相似文献   

20.
Fine structural study indicates that the neuromuscular system of stage I polyps of Aurelia aurita is exclusively ectodermal. The three major muscle fields are the radial muscles of the oral disc, the longitudinal muscles of the tentacles, and the muscle cords of the septae and the column; the muscle fields are in physical continuity at the peristomial pits and share a common innervation and type of myofibril. The myofibril is striated in the tentacle base, in the outer oral disc, and in the upper part of the muscle cord; it grades into a smooth muscle toward the tentacle tip, the mouth, and the lower part of the cord. There is a fourth field of longitudinal smooth muscle in the pharynx. The nervous system consists of an epithelial sensory cell in the tentacle and a single type of neuron found in the subepithelial layer of the tentacle, oral disc, and muscle cord. The lack of gap junctions suggests that there is no nonnervous conduction system. The subepithelial layer also contains three types of fibers and a type of soma which cannot be characterized as neuronal. The soma is identified as the “neurosecretory cell” described in Chrysaora. The absence of neuromuscular elements in the column and stolon distinguishes the Aurelia aurita collected from Washington, USA, from English polyps previously described.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号