首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 890 毫秒
1.
真核细胞的纤毛(也称鞭毛)是一种突出于细胞表面的极性细胞器,纤毛不仅参与细胞运动,还参与信号传导等过程,其结构或功能异常引发的一系列人类疾病称为"纤毛相关性疾病"。纤毛相关性疾病巴德-毕德氏综合征(Bardet-Biedl syndrome,简称BBS)由BBS相关基因缺陷导致,为了研究致病基因BBS8的生理作用和功能,构建模式生物莱茵衣藻BBS8基因缺陷突变体,利用性状观测和生化分析检测突变体的表现型和生理功能。免疫荧光表明BBS8蛋白是一种鞭毛蛋白且在基体有特异性定位;bbs8突变体感光极性运动消失,并在解聚诱导实验中鞭毛解聚缓慢;鞭毛的银染和质谱结果表明突变体的鞭毛膜蛋白在鞭毛内异常积累。文中通过实验证据说明BBS8蛋白在参与鞭毛内膜蛋白运输中起到重要作用,并极可能通过介导膜蛋白反向运输发挥生理功能。  相似文献   

2.
衣藻是用来研究植物光合作用和动物纤毛常用的模式生物.为了研究蛋白质之间的相互作用,利用SMART技术构建了衣藻的酵母双杂交文库.使用Trizol试剂提取鞭毛再生过程和光周期培养的细胞进入分裂前的衣藻细胞的总RNA,经过Oligotex纯化得到mRNA;应用SMART技术和LD-PCR合成双链cDNA,经过CHROMA SPIN TE-400柱子去除短片段的cDNA;cDNA和线性化载体pGADT7-Rec共转化酵母Y187构建酵母双杂交文库.库容达到3.0 × 106CFU,重组率为70%,插入片段平均长度为0.6 kb.以上结果说明该文库质量较好,能够通过筛选文库得到与目的蛋白互相作用的蛋白质,为寻找蛋白质的作用伴侣打下基础.  相似文献   

3.
衣藻有性生殖的分子机制   总被引:1,自引:0,他引:1  
衣藻作为分子生物学研究的模式材料,被广泛用于植物光合作用、鞭毛组装与功能、细胞周期与节律、细胞信号传导与光感受、细胞识别等重要生物学过程的研究,而且衣藻有性生殖的分子机制与人类某些疾病的发生机制存在联系.该文对国内外近年来有关莱茵衣藻在有性生殖过程中凝集素的动态分布,包括鞭毛粘连、补充、传递、脱粘连、凝集素合成的正调节,以及与性凝集素行为有关的基因研究进展进行综述,以阐明衣藻有性生殖的分子机制,为人类的疾病研究提供参考.  相似文献   

4.
书刊介绍     
该书包括的内容有:导论;1.断裂“半;膜的分析;2.刷状缘:细胞骨架的结构、生化、流动性及组装研究模型;3.溶酶体概念;从分离的颗粒到细胞的酸性水解酶区域;4衣藻属鞭毛膜的糖蛋白的力学;5.一种光合作用膜的结构分析;绿色红假单胞菌;6.冻  相似文献   

5.
对本研究室经T-DNA插入法获得的拟南芥株型突变株系——隐性突变体zpr1植株进行植物学性状调查和遗传分析,并对该突变基因进行鉴定、表达定位和调控元件分析。结果显示:(1)性状分析表明,与野生型拟南芥Ws-2相比,突变体zpr1的茎生叶分枝数量增加,茎生叶分枝发生于拟南芥顶端花序部位;野生型拟南芥茎生叶为披针形,而突变体zpr1没有出现分枝的茎生叶呈倒卵形,出现分枝的茎生叶呈披针型;突变体zpr1的主花序高度、株高、分枝高度和分枝长度都高于野生型,且分枝数多于野生型。(2)利用质粒挽救和反向PCR法(IPCR)确定了ZPR1基因突变发生位置是该基因起始密码子上游426bp处,证明T-DNA插入破坏了ZPR1基因的启动子区域,导致该基因在拟南芥内不能正常表达。(3)基因转录调控区域的顺式作用元件分析发现在ZPR1基因的转录调控区有多个与植物激素相关的调控元件,还有与光周期调节相关的调控元件。(4)亚细胞定位发现,ZPR1基因在所有细胞中的细胞膜中表达,而在部分细胞的细胞膜、细胞质和细胞核中均有表达。研究表明,ZPR1基因的表达对植物株型发育有重要的调控作用,该基因的表达水平受植物激素和光照的调节,最终导致了植物株型的变化。  相似文献   

6.
本研究从贵州地方粳稻(Oryza sativa ssp.japonica)品种‘黎平杂边禾’甲基磺酸乙酯(EMS)突变体库中筛选获得一份能稳定遗传的矮秆小粒突变体,暂命名为dss1(dwarf and small seed 1)。与野生型相比,dss1表现为植株矮化、株型直立、叶色深绿、籽粒变小、第二节间严重缩短、穗长增加等典型油菜素内酯(BR)缺陷突变体的性状。显微观察结果表明dss1叶鞘表皮细胞的长度变短,可能是突变体第二叶鞘长度比野生型短的原因。对突变体的暗形态建成与BR敏感性研究表明,黑暗条件下突变体表现为去黄化表型,对外源BR敏感。遗传特性分析证明dss1突变体由一个隐性单基因位点控制。利用Mut Map技术将dss1基因定位于3号染色体上,筛选获得一个候选基因,测序结果表明,dss1候选基因为BR合成途径关键酶基因Os DWARF,dss1是由于该基因第5个外显子上第335位的氨基酸由苏氨酸(ACT)突变为异亮氨酸(ATT)所引起的。定位得到的矮化小粒基因DSS1为一个新的Os DWARF等位基因。  相似文献   

7.
为了研究STT3a基因在杜氏盐藻耐盐及鞭毛再生方面的作用,根据衣藻、拟南芥等STT3a蛋白的氨基酸高度保守序列VCVFTA、DVDYVL设计一对简并引物,采用RT-PCR及3'RACE的方法扩增杜氏盐藻STT3a蛋白功能结构域的cDNA序列。序列分析显示克隆的cDNA全长1650bp,具有一定保守性,与衣藻、拟南芥和人的相似性分别为48%、50%和46%。实时荧光定量PCR结果显示杜氏盐藻STT3amRNA水平随着盐浓度的升高而逐渐增加,其水平在3.5mol/LNaCl浓度时比在1.5mol/LNaCl浓度时升高了11倍(P0.01)。另外,与没有脱鞭毛的杜氏盐藻相比,STT3amRNA在鞭毛再生过程中持续高表达。本研究显示杜氏盐藻STT3a基因的高表达可以增强其盐适应和鞭毛再生能力。  相似文献   

8.
模式生物衣藻及其研究进展   总被引:5,自引:0,他引:5  
谢传晓  韩伟  余增亮 《遗传》2003,25(3):350-354
单细胞衣藻(Chlamydomonas)由于其生活周期简单,培养方法简便,易于分离得到系列的突变体,并已建立了分子遗传学研究技术与遗传分析系统,成为植物光合作用、鞭毛组装与功能、细胞周期及节律、细胞信号传导与光感受、细胞识别等重要生物学过程研究的模式生物体。本文对模式生物衣藻及其相关生物学途径的研究进展作一综述。 Abstract:The unicellular alga Chlamydomonas offers a simple life cycle,easy culture and isolation of series of mutants,established the techniques and tool kit for molecular genetics and genetics analysis.It is now becoming the model organism for studies on photosynthesis in plant,flagellar assembly and function,cell cycle and circadian rhythms,signal transduction,light perception and cell recognition.It is summarized the progress of study on Chlamydomonas as a model organism in this paper.  相似文献   

9.
水稻(Oryzasativa)籽粒大小是影响其产量的关键农艺性状,克隆并研究水稻籽粒大小相关基因对于提高水稻产量具有重要意义。为深入探究水稻籽粒大小的调控机制,通过EMS诱变品种宽叶粳(KYJ),分离了一系列水稻籽粒大小改变的突变体,其中smg12表现为籽粒变小,株高变矮,一级枝梗数和二级枝梗数减少。遗传分析表明,该小粒突变体受隐性单基因控制。细胞学分析显示,该突变体颖壳纵向细胞长度显著变短,表明SMG12主要影响细胞扩展。利用Mutmap方法对候选基因进行克隆,筛选出SMG12的候选基因OsBRI1,该基因编码油菜素内酯受体激酶。OsBRI1外显子上的第2 074个碱基发生了由C到T的置换,产生非同义突变,使得该位置编码的脯氨酸变为丝氨酸,从而影响OsBRI1的功能。综上,该研究鉴定了OsBRI1基因的1个新等位变异,揭示了油菜素内酯途径调控水稻籽粒大小的细胞和分子基础。  相似文献   

10.
体外合成DNA伴随的随机突变是制约基因定点突变效率的重要因素。以克隆周期蛋白E(cyclin E)及其截短基因的激酶活性缺失突变体为例,对传统重叠延伸PCR(overlap extension PCR,OE-PCR)作适当改进,提出一种系列相关基因定点突变的优化方案。前期研究中已克隆了cyclin E基因及其2个截短基因T1、T2,并通过EcoRⅠ/SalⅠ双酶切插入pEGFP_C2载体。限制性酶切分析发现cyclin E基因序列中含有1个AgeⅠ位点将其分为F1、F2两段,目标突变位点KD位于F2段。对于cyclin E及其截短基因,F2段是完全一致的。因此,通过重叠延伸PCR扩增含突变位点的共有片段F2,从C2-cyclin E、C2-cyclin E_T1和C2-cyclin E_T2这3个原始质粒中切取相应的F1片段,再将F1与酶切的F2一起连接插入载体以重构完整突变体。对比检测发现OE-PCR扩增较短DNA片段更易成功。C2-cyclin E、C2-cyclin E_T1和C2-cyclin E_T2这3组均能筛选出一定数量克隆,经检测和序列鉴定,每组各得到1个序列完全准确的目标突变体。研究表明,采用部分扩增可以缩短DNA合成长度,避免了目标基因反复扩增等不利因素,从而减少随机突变;双片段连接避免了双AgeⅠ位点对常规酶切-连接的限制。两者相结合,可作为其他系列相关基因定点突变的优化方案。  相似文献   

11.
12.
A series of conditional mutants of the algal, biflagellate Chlamydomonas reinhardtii with temperature-sensitive defects in flagellar assembly and function were isolated. The genetics and phenotypes of 21 mutants displaying a rapid alteration in flagellar function upon shift from the permissive (20 degrees C) to the restrictive (32 degrees C) temperatures are described. These mutants designated as "drop-down" or dd-mutants have been placed in four categories on the basis of their defective phenotypes: (a) dd-assembly mutants - the preformed flagella are resorbed at 32 degrees C and reassembly of flagella is inhibited; (b) dd-fragile flagella mutants - the flagella are lost by detachment at 32 degrees C, but can be reassembled; (c) dd-motility mutants - the flagella are retained at 32 degrees C, but are functionally defective; (d) dd-lethal mutants - display combined defects in flagellar function and cell growth. Tetrad analysis of the mutants back-crossed to wild-type, recombination analysis of intermutant crosses, and complementation tests in the construction of heterozygous diploid strains indicate that at least 14 nuclear genetic loci are represented among 21 mutants. The availability of temperature-sensitive mutations affecting the assembly and function of the flagellum suggests that the morphogenesis of this complex eukaryotic organelle is amenable to genetic dissection.  相似文献   

13.
Little is known about the molecular basis of organelle size control in eukaryotes. Cells of the biflagellate alga Chlamydomonas reinhardtii actively maintain their flagella at a precise length. Chlamydomonas mutants that lose control of flagellar length have been isolated and used to demonstrate that a dynamic process keeps flagella at an appropriate length. To date, none of the proteins required for flagellar length control have been identified in any eukaryotic organism. Here, we show that a novel MAP kinase is crucial to enforcing wild-type flagellar length in C. reinhardtii. Null mutants of LF4 [2], a gene encoding a protein with extensive amino acid sequence identity to a mammalian MAP kinase of unknown function, MOK [3], are unable to regulate the length of their flagella. The LF4 protein (LF4p) is localized to the flagella, and in vitro enzyme assays confirm that the protein is a MAP kinase. The long-flagella phenotype of lf4 cells is rescued by transformation with the cloned LF4 gene. The demonstration that a novel MAP kinase helps enforce flagellar length control indicates that a previously unidentified signal transduction pathway controls organelle size in C. reinhardtii.  相似文献   

14.
Mutations in the UNI2 locus in Chlamydomonas reinhardtii result in a "uniflagellar" phenotype in which flagellar assembly occurs preferentially from the older basal body and ultrastructural defects reside in the transition zones. The UNI2 gene encodes a protein of 134 kDa that shares 20.5% homology with a human protein. Immunofluorescence microscopy localized the protein on both basal bodies and probasal bodies. The protein is present as at least two molecular-weight variants that can be converted to a single form with phosphatase treatment. Synthesis of Uni2 protein is induced during cell division cycles; accumulation of the phosphorylated form coincides with assembly of transition zones and flagella at the end of the division cycle. Using the Uni2 protein as a cell cycle marker of basal bodies, we observed migration of basal bodies before flagellar resorption in some cells, indicating that flagellar resorption is not required for mitotic progression. We observed the sequential assembly of new probasal bodies beginning at prophase. The uni2 mutants may be defective in the pathways leading to flagellar assembly and to basal body maturation.  相似文献   

15.
Four long-flagella (LF) genes are important for flagellar length control in Chlamydomonas reinhardtii. Here, we characterize two new null lf3 mutants whose phenotypes are different from previously identified lf3 mutants. These null mutants have unequal-length flagella that assemble more slowly than wild-type flagella, though their flagella can also reach abnormally long lengths. Prominent bulges are found at the distal ends of short, long, and regenerating flagella of these mutants. Analysis of the flagella by electron and immunofluorescence microscopy and by Western blots revealed that the bulges contain intraflagellar transport complexes, a defect reported previously (for review see Cole, D.G., 2003. Traffic. 4:435-442) in a subset of mutants defective in intraflagellar transport. We have cloned the wild-type LF3 gene and characterized a hypomorphic mutant allele of LF3. LF3p is a novel protein located predominantly in the cell body. It cosediments with the product of the LF1 gene in sucrose density gradients, indicating that these proteins may form a functional complex to regulate flagellar length and assembly.  相似文献   

16.
Wild-type Chlamydomonas reinhardtii carry two flagella per cell that are used for both motility and mating. We describe a mutant, vfl-1, in which the biflagellate state is disrupted such that the number of flagella per cell ranges from 0 to as many as 10. vfl-1 cells possess the novel ability to assemble new flagella throughout the G1 portion of the cell cycle, resulting in an average increase of about 0.05 flagella per cell per hour. Such uncoupling of the flagellar assembly cycle from the cell cycle is not observed in other mutants with abnormal flagellar number. Rather than being located in an exclusively apical position characteristic of the wild type, vfl-1 flagella can be at virtually any location on the cell surface. vfl-1 cells display abnormally wide variations in cell size, probably owing to extremely unequal cell divisions. Various ultrastructural abnormalities in the flagellar apparatus are also present, including missing or defective striated fibers and reduced numbers of rootlet microtubules. The pleiotropic defects observed in vfl-1 result from a recessive Mendelian mutation mapped to Chromosome VIII.  相似文献   

17.
Luo M  Cao M  Kan Y  Li G  Snell W  Pan J 《Current biology : CB》2011,21(7):586-591
Flagella and cilia are structurally polarized organelles whose lengths are precisely defined, and alterations in length are related to several human disorders. Intraflagellar transport (IFT) and protein signaling molecules are implicated in specifying flagellar and ciliary length, but evidence has been lacking for a flagellum and cilium length sensor that could participate in active length control or establishment of structural polarity. Previously, we showed that the phosphorylation state of the aurora-like protein kinase CALK in Chlamydomonas is a marker of the absence of flagella. Here we show that CALK phosphorylation state is also a marker for flagellar length. CALK is phosphorylated in cells without flagella, and during flagellar assembly it becomes dephosphorylated. Dephosphorylation is not simply a consequence of initiation of flagellar assembly or of time after experimentally induced flagellar loss, but instead requires flagella to be assembled to a threshold length. Analysis of cells with flagella of varying lengths shows that the threshold length for CALK dephosphorylation is ~6 μm (half length). Studies with short and long flagellar mutants indicate that cells detect absolute rather than relative flagellar length. Our results demonstrate that cells possess a mechanism for translating flagellar length into a posttranslational modification of a known flagellar regulatory protein.  相似文献   

18.
Chlamydomonas cells excise their flagella in response to a variety of experimental conditions (e.g., extremes of temperature or pH, alcohol or detergent treatment, and mechanical shear). Here, we show that flagellar excision is an active process whereby microtubules are severed at select sites within the transition zone. The transition zone is located between the flagellar axoneme and the basal body; it is characterized by a pair of central cylinders that have an H shape when viewed in longitudinal section. Both central cylinders are connected to the A tubule of each microtubule doublet of the transition zone by fibers (approximately 5 nm diam). When viewed in cross section, these fibers are seen to form a distinctive stellate pattern characteristic of the transition zone (Manton, I. 1964. J. R. Microsc. Soc. 82:279-285; Ringo. D. L. 1967. J. Cell Biol. 33:543-571). We demonstrate that at the time of flagellar excision these fibers contract and displace the microtubule doublets of the axoneme inward. We believe that the resulting shear force and torsional load act to sever the axonemal microtubules immediately distal to the central cylinder. Structural alterations of the transition zone during flagellar excision occur both in living cells and detergent-extracted cell models, and are dependent on the presence of calcium (greater than or equal to 10(-6) M). Immunolocalization using monoclonal antibodies against the calcium-binding protein centrin demonstrate the presence of centrin in the fiber-based stellate structure of the transition zone of wild-type cells. Examination of the flagellar autotomy mutant, fa-1, which fails to excise its flagella (Lewin, R., and C. Burrascano. 1983. Experientia. 39:1397-1398), demonstrates that the fa-1 lacks the ability to completely contract the fibers of the stellate structure. We conclude that flagellar excision in Chlamydomonas involves microtubule severing that is mediated by the action of calcium-sensitive contractile fibers of the transition zone. These observations have led us to question whether microtubule severing may be a more general phenomenon than previously suspected and to suggest that microtubule severing may contribute to the dynamic behavior of cytoplasmic microtubules in other cells.  相似文献   

19.
Alpha-tubulin acetylase activity in isolated Chlamydomonas flagella   总被引:5,自引:5,他引:0       下载免费PDF全文
《The Journal of cell biology》1985,101(6):2081-2084
We have previously shown that the alpha-tubulin of Chlamydomonas flagella is synthesized as a precursor which is modified by acetylation in the flagellum during flagellar assembly. In this report, we show the presence of an alpha-tubulin acetylase activity in isolated Chlamydomonas flagella that is highly specific for alpha-tubulin of both mammalian brain and Chlamydomonas.  相似文献   

20.
Chlamydomonas flagella can undergo a calcium-dependent conversion between an asymmetric ciliary waveform and a symmetric flagellar waveform. Mutations at three MBO loci abolish the predominant ciliary waveform and result in cells that move backward only with the flagellar waveform. We have cloned and characterized the MBO2 gene. It encodes a novel protein with extensive alpha-helical coiled-coils and two leucine zippers. Sequences highly similar to MBO2p were found in a variety of organisms with cilia and flagella, suggesting that the MBO2 gene function may be conserved in many diverse taxa. Antibodies to MBO2p recognized an axonemal protein of 110 kDa, which appeared to be tightly associated with doublet microtubules. The protein was present in flagella of a variety of paralyzed flagellar mutants that lacked different axonemal structures, indicating that MBO2p is a component of a previously uncharacterized flagellar protein complex. In contrast to the earlier suggestion that the MBO2 gene may encode a component of an intramicrotubular beak-like structure present only proximally in flagella, we localized an epitope-tagged MBO2p along the entire length of the flagella. Moreover, the insertion of a hemagglutinin (HA) epitope in the conserved C-terminal domain of MBO2p reduced the swimming velocity of cells transformed with the epitope-tagged gene. These results indicate that MBO2p may play a role both in the assembly of the beak-like structure and the regulation of the force-generation machinery during the ciliary beat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号