首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The [4Fe-4S] cluster is ubiquitous to a class of base excision repair enzymes in organisms ranging from bacteria to man and was first considered as a structural element, owing to its redox stability under physiological conditions. When studied bound to DNA, two of these repair proteins (MutY and Endonuclease III from Escherichia coli) display DNA-dependent reversible electron transfer with characteristics typical of high potential iron proteins. These results have inspired a reexamination of the role of the [4Fe-4S] cluster in this class of enzymes. Might the [4Fe-4S] cluster be used as a redox cofactor to search for damaged sites using DNA-mediated charge transport, a process well known to be highly sensitive to lesions and mismatched bases? Described here are experiments demonstrating the utility of DNA-mediated charge transport in characterizing these DNA-binding metalloproteins, as well as efforts to elucidate this new function for DNA as an electronic signaling medium among the proteins.  相似文献   

2.
Fromme JC  Verdine GL 《The EMBO journal》2003,22(13):3461-3471
Nearly all cells express proteins that confer resistance to the mutagenic effects of oxidative DNA damage. The primary defense against the toxicity of oxidative nucleobase lesions in DNA is the base-excision repair (BER) pathway. Endonuclease III (EndoIII) is a [4Fe-4S] cluster-containing DNA glycosylase with repair activity specific for oxidized pyrimidine lesions in duplex DNA. We have determined the crystal structure of a trapped intermediate that represents EndoIII frozen in the act of repairing DNA. The structure of the protein-DNA complex provides insight into the ability of EndoIII to recognize and repair a diverse array of oxidatively damaged bases. This structure also suggests a rationale for the frequent occurrence in certain human cancers of a specific mutation in the related DNA repair protein MYH.  相似文献   

3.
Lu AL  Wright PM 《Biochemistry》2003,42(13):3742-3750
Escherichia coli MutY is an adenine and a weak guanine DNA glycosylase involved in reducing mutagenic effects of 7,8-dihydro-8-oxoguanine (8-oxoG). The [4Fe-4S] cluster of MutY is ligated by four conserved cysteine residues and has been shown to be important in substrate recognition. Here, we show that the C199A mutant MutY is very insoluble and can be denatured and renatured to regain activity only if iron and sulfur are present in the renaturation steps. The solubility of C199A-MutY can be improved substantially as a fusion protein containing streptococcal protein G (GB1 domain) at its N-terminus. Here, we describe the first biochemical characterization of the purified GB1-C199A-MutY protein which contains a [3Fe-4S] cluster. The apparent dissociation constant (K(d)) values of GB1-C199A-MutY with both A/G and A/8-oxoG mismatches are slightly higher than that of the wild-type protein. The DNA glycosylase activity of GB1-C199A-MutY is comparable to that of the wild-type enzyme. Interestingly, the major difference between the C199A-MutY and wild-type proteins is their trapping activities (formation of Schiff base intermediates). The GB1-C199A-MutY mutant has a weaker trapping activity than the wild-type enzyme. Importantly, highly expressed GB1-C199A-MutY and untagged C199A-MutY can complement mutY mutants; however, GB1-C199A-MutY and untagged C199A-MutY cannot complement mutY mutants in vivo when both proteins are poorly expressed. Therefore, an intact [4Fe-4S] cluster domain is critical for MutY stability and activity.  相似文献   

4.
MutY and endonuclease III, two DNA glycosylases from Escherichia coli, and AfUDG, a uracil DNA glycosylase from Archeoglobus fulgidus, are all base excision repair enzymes that contain the [4Fe-4S](2+) cofactor. Here we demonstrate that, when bound to DNA, these repair enzymes become redox-active; binding to DNA shifts the redox potential of the [4Fe-4S](3+/2+) couple to the range characteristic of high-potential iron proteins and activates the proteins toward oxidation. Electrochemistry on DNA-modified electrodes reveals potentials for Endo III and AfUDG of 58 and 95 mV versus NHE, respectively, comparable to 90 mV for MutY bound to DNA. In the absence of DNA modification of the electrode, no redox activity can be detected, and on electrodes modified with DNA containing an abasic site, the redox signals are dramatically attenuated; these observations show that the DNA base pair stack mediates electron transfer to the protein, and the potentials determined are for the DNA-bound protein. In EPR experiments at 10 K, redox activation upon DNA binding is also evident to yield the oxidized [4Fe-4S](3+) cluster and the partially degraded [3Fe-4S](1+) cluster. EPR signals at g = 2.02 and 1.99 for MutY and g = 2.03 and 2.01 for Endo III are seen upon oxidation of these proteins by Co(phen)(3)(3+) in the presence of DNA and are characteristic of [3Fe-4S](1+) clusters, while oxidation of AfUDG bound to DNA yields EPR signals at g = 2.13, 2.04, and 2.02, indicative of both [4Fe-4S](3+) and [3Fe-4S](1+) clusters. On the basis of this DNA-dependent redox activity, we propose a model for the rapid detection of DNA lesions using DNA-mediated electron transfer among these repair enzymes; redox activation upon DNA binding and charge transfer through well-matched DNA to an alternate bound repair protein can lead to the rapid redistribution of proteins onto genome sites in the vicinity of DNA lesions. This redox activation furthermore establishes a functional role for the ubiquitous [4Fe-4S] clusters in DNA repair enzymes that involves redox chemistry and provides a means to consider DNA-mediated signaling within the cell.  相似文献   

5.
Succinate dehydrogenase is an indispensable enzyme involved in the Krebs cycle as well as energy coupling in the mitochondria and certain prokaryotes. During catalysis, succinate oxidation is coupled to ubiquinone reduction by an electron transfer relay comprising a flavin adenine dinucleotide cofactor, three iron-sulfur clusters, and possibly a heme b556. At the heart of the electron transport chain is a [4Fe-4S] cluster with a low midpoint potential that acts as an energy barrier against electron transfer. Hydrophobic residues around the [4Fe-4S] cluster were mutated to determine their effects on the midpoint potential of the cluster as well as electron transfer rates. SdhB-I150E and SdhB-I150H mutants lowered the midpoint potential of this cluster; surprisingly, the His variant had a lower midpoint potential than the Glu mutant. Mutation of SdhB-Leu-220 to Ser did not alter the redox behavior of the cluster but instead lowered the midpoint potential of the [3Fe-4S] cluster. To correlate the midpoint potential changes in these mutants to enzyme function, we monitored aerobic growth in succinate minimal medium, anaerobic growth in glycerol-fumarate minimal medium, non-physiological and physiological enzyme activities, and heme reduction. It was discovered that a decrease in midpoint potential of either the [4Fe-4S] cluster or the [3Fe-4S] cluster is accompanied by a decrease in the rate of enzyme turnover. We hypothesize that this occurs because the midpoint potentials of the [Fe-S] clusters in the native enzyme are poised such that direction of electron transfer from succinate to ubiquinone is favored.  相似文献   

6.
Rogers PA  Eide L  Klungland A  Ding H 《DNA Repair》2003,2(7):809-817
Endonuclease III, a highly conserved enzyme initiating the base excision repair of oxidized DNA bases, hosts a [4Fe-4S] cluster. Unlike many other iron-sulfur clusters, the [4Fe-4S] cluster of endonuclease III is stable and resistant to both oxidation and reduction. Here we show that the [4Fe-4S] cluster of the E. coli endonuclease III can be readily modified by nitric oxide forming the protein-bound dinitrosyl iron complex in vitro and in vivo. Modification of the [4Fe-4S] cluster completely inhibits the DNA glycosylase activity of the endonuclease III. Remarkably, the enzymatic activity is restored when the [4Fe-4S] cluster is re-assembled in the endonuclease III dinitrosyl iron complex with L-cysteine, cysteine desulfurase (IscS) and ferrous iron in vitro. Furthermore, the nitric oxide-modified [4Fe-4S] cluster in endonuclease III is efficiently repaired in aerobically growing E. coli cells, and this repair does not require new protein synthesis. These results suggest that the E. coli endonuclease III can be reversibly inactivated by nitric oxide via modification of its [4Fe-4S] cluster.  相似文献   

7.
8.
The soluble methane monooxygenase (sMMO) from Methylococcus capsulatus (Bath) is a multicomponent enzyme system required for the conversion of methane to methanol. It comprises a hydroxylase, a regulatory protein, and a reductase. The reductase contains two domains: an NADH-binding and FAD-containing flavin domain and a ferredoxin (Fd) domain carrying a [2Fe-2S] cofactor. Here, we report the solution structure of the reduced form of the 98-amino acid Fd domain (Blazyk, J. L., and Lippard, S. J. Unpublished results) determined by nuclear magnetic resonance (NMR) spectroscopy and restrained molecular dynamics calculations. The structure consists of six beta strands arranged into two beta sheets as well as three alpha helices. Two of these helices form a helix-proline-helix motif, unprecedented among [2Fe-2S] proteins. The [2Fe-2S] cluster is coordinated by the sulfur atoms of cysteine residues 42, 47, 50, and 82. The 10.9 kDa ferredoxin domain of the reductase protein transfers electrons to carboxylate-bridged diiron centers in the 251 kDa hydroxylase component of sMMO. The binding of the Fd domain with the hydroxylase was investigated by NMR spectroscopy. The hydroxylase binding surface on the ferredoxin protein has a polar center surrounded by patches of hydrophobic residues. This arrangement of amino acids differs from that by which previously studied [2Fe-2S] proteins interact with their electron-transfer partners. The critical residues on the Fd domain involved in this binding interaction map well onto the universally conserved residues of sMMO enzymes from different species. We propose that the [2Fe-2S] domains in these other sMMO systems have a fold very similar to the one found here for M. capsulatus (Bath) MMOR-Fd.  相似文献   

9.
Iron-sulfur ([Fe-S]) clusters are common in electron transfer proteins, and their midpoint potentials (E(m) values) play a major role in defining the rate at which electrons are shuttled. The E(m) values of [Fe-S] clusters are largely dependent on the protein environment as well as solvent accessibility. The electron transfer subunit (DmsB) of Escherichia coli dimethylsulfoxide reductase contains four [4Fe-4S] clusters (FS1-FS4) with E(m) values between -50 and -330 mV. We have constructed an in silico model of DmsB and addressed the roles of a group of residues surrounding FS4 in electron transfer, menaquinol (MQH(2)) binding, and protein control of its E(m). Residues Pro80, Ser81, Cys102, and Tyr104 of DmsB are located at the DmsB-DmsC interface and are critical for the binding of the MQH(2) inhibitor analogue 2-n-heptyl-4-hydroxyquinoline N-oxide (HOQNO) and the transfer of electrons from MQH(2) to FS4. Because the EPR spectrum of FS4 is complicated by spectral overlap and spin-spin interactions with the other [4Fe-4S] clusters of DmsB, we evaluated mutant effects on FS4 in double mutants (with a DmsB-C102S mutation) in which FS4 is assembled as a [3Fe-4S] cluster (FS4([3Fe)(-)(4S])). The DmsB-C102S/Y104D and DmsB-C102S/Y104E mutants dramatically lower the E(m) of FS4([3Fe)(-)(4S]) from 275 to 150 mV and from 275 to 145 mV, respectively. Mutations of positively charged residues around FS4([3Fe)(-)(4S]) lower its E(m), but mutations of negatively charged residues have negligible effects. The E(m) of FS4([3Fe)(-)(4S]) in the DmsB-C102S mutant is insensitive to HOQNO as well as to changes in pH from 5 to 7. The FS4([3Fe)(-)(4S]) E(m) of the DmsB-C102S/Y104D mutant increases in the presence of HOQNO and decreasing pH. Analyses of the mutants suggest that the maximum achievable E(m) for FS4([3Fe)(-)(4S]) of DmsB is approximately 275 mV.  相似文献   

10.
11.
An N-terminal domain of Clostridium pasteurianum hydrogenase I, encompassing 76 residues out of the 574 composing the full-size enzyme, had previously been overproduced in Escherichia coli and shown to form a stable fold around a [2Fe-2S] cluster. This domain displays only marginal sequence similarity with [2Fe-2S] proteins of known structure, and therefore, two-dimensional 1H NMR has been implemented to elucidate features of the polypeptide fold. Despite the perturbing presence of the paramagnetic [2Fe-2S] cluster, 57 spin systems were detected in the TOCSY spectra, 52 of which were sequentially assigned through NOE connectivities. Several secondary structure elements were identified. The N terminus of the protein consists of two antiparallel beta strands followed by an alpha helix contacting both strands. Two additional antiparallel beta strands, one of them at the C terminus of the sequence, form a four-stranded beta sheet together with the two N-terminal strands. The proton resonances that can be attributed to this beta2alphabeta2 structural motif undergo no paramagnetic perturbations, suggesting that it is distant from the [2Fe-2S] cluster. In plant- and mammalian-type ferredoxins, a very similar structural pattern is found in the part of the protein farthest from the [2Fe-2S] cluster. This indicates that the N-terminal domain of C. pasteurianum hydrogenase folds in a manner very similar to those of plant- and mammalian-type ferredoxins over a significant part (ca. 50%) of its structure. Even in the vicinity of the metal site, where 1H NMR data are blurred by paramagnetic interactions, the N-terminal domains of hydrogenase and mammalian- and plant-type ferredoxins most likely display significant structural similarity, as inferred from local sequence alignments and from previously reported circular dichroism and resonance Raman spectra. These data afford structural information on a kind of [2Fe-2S] cluster-containing domain that occurs in a number of redox enzymes and complexes. In addition, together with previously published sequence alignments, they highlight the widespread distribution of the plant-type ferredoxin fold in bioenergetic systems encompassing anaerobic metabolism, photosynthesis, and aerobic respiratory chains.  相似文献   

12.
R A Rothery  J H Weiner 《Biochemistry》1991,30(34):8296-8305
We have used site-directed mutagenesis to alter the [Fe-S] cluster composition of Escherichia coli dimethyl sulfoxide (DMSO) reductase (DmsABC). The electron-transfer subunit (DmsB) of this enzyme contains 16 Cys residues arranged in 4 groups (I-IV) which provide ligands to 4 [4Fe-4S] clusters [Cammack, R., & Weiner, J. H. (1990) Biochemistry 29, 8410-8416]. Strong homologies exist between these Cys groups and the four Cys groups of the electron-transfer subunit (NarH) of E. coli nitrate reductase (NarGHJI), which contains a [3Fe-4S] cluster in addition to multiple [4Fe-4S] clusters. The Cys group primarily involved in providing ligands to the [3Fe-4S] cluster of NarH has a Trp residue at a position equivalent to Cys102 of DmsB. We have mutated Cys102 to Trp, Ser, Tyr, and Phe and have investigated the altered enzymes in terms of their enzymatic activities and EPR properties. The mutant enzymes do not support electron transfer from menaquinol to DMSO, although they retain high rates of electron transport from reduced benzyl viologen to DMSO. The mutations cause major changes in the EPR properties of the enzyme in the fully reduced and oxidized states. In the oxidized state, new species are observed in all the mutants; these have spectral features comprising a peak at g = 2.03 (gz) and a peak-trough at g = 2.00 (gxy). The temperature dependencies, microwave power dependencies, and spin quantitations of these species are consistent with the Trp102, Ser102, Phe102, and Tyr102 mutations causing conversion of one of the [4Fe-4S] clusters present in the wild-type enzyme into [3Fe-4S] clusters in the mutant enzymes.  相似文献   

13.
14.
The properties of the [4Fe-4S]2+/+ cluster in wild-type and the A33Y variant of Pyrococcus furiosus ferredoxin have been investigated by the combination of EPR, variable-temperature magnetic circular dichroism (VTMCD) and resonance Raman (RR) spectroscopies. The A33Y variant involves the replacement of an alanine whose alpha-C is less than 4 A from one of the cluster iron atoms by a tyrosine residue. Although the spectroscopic results give no indication of tyrosyl cluster ligation, the presence of a tyrosine residue in close proximity to the cluster results in a 38-mV decrease in the midpoint potential of the [4Fe-4S]2+/+ couple and has a marked effect on the ground state properties of the reduced cluster. The mixed spin [4Fe-4S]+ cluster in the wild-type protein, 80% S = 3/2 (E/D = 0.22, D = +3.3 cm(-1)) and 20% S = 1/2 (g = 2.10, 1.87, 1.80), is converted into a homogeneous S = 3/2 (E/D = 0.30, D = -0.7 cm(-1)) form in the A33Y variant. As the first example of a pure S = 3/2 [4Fe-4S]+ cluster in a ferredoxin, this variant affords the opportunity for detailed characterization of the excited electronic properties via VTMCD studies and demonstrates that the protein environment can play a crucial role in determining the ground state properties of [4Fe-4S]+ clusters.  相似文献   

15.
The subunit location of the [2Fe-2S], [3Fe-4S], and [4Fe-4S] clusters in Escherichia coli fumarate reductase has been investigated by EPR studies of whole cells or whole cells extracts of a fumarate reductase deletion mutant with plasmid amplified expression of discrete fumarate reductase subunits or groups of subunits. The results indicate that both the [2Fe-2S] and [3Fe-4S] clusters are located entirely in the iron-sulfur protein subunit. Information concerning the specific cysteine residues that ligate these clusters has been obtained by investigating the EPR characteristics of cells of the deletion mutant amplified with a plasmid coding for the flavoprotein subunit and a truncated iron-sulfur protein subunit. While the results are not definitive with respect to the location of the [4Fe-4S] cluster, they are most readily interpreted in terms of this cluster being entirely in the flavoprotein subunit or bridging between the two catalytic domain subunits. These new results are discussed in light of the amino acid sequences of the two subunits and the sequences of structurally well characterized iron-sulfur proteins containing [2Fe-2S], [3Fe-4S], and [4Fe-4S] centers.  相似文献   

16.
A J Thomson 《FEBS letters》1991,285(2):230-236
Azotobacter vinelandii (Av) and chroococcum (Ac) ferredoxin I contain [3Fe-4S]1 + 0 and [4Fe-4S]2+1+ clusters, when isolated aerobically, which undergo one-electron redox cycles at potentials of -460 +/- 10 mV (vs SHE) at pH 8.3 and -645 +/- 10 mV, respectively. The X-ray structure of Fd I (Av) reveals that the N-terminal half of the polypeptide folds as a sandwich of beta-strands which enclose the iron-sulphur clusters. The C-terminal sequence contains an amphiphilic alpha-helix of four turns which lies on the surface of the beta-barrel. Fd I (Av) controls expression of an unknown protein of Mr approximately 18,000. Fd I (Ac) will complex iron(II) avidly above pH approximately 8.0 only when the [3Fe-4S] cluster is reduced and provided that cellular nucleic acid is bound. Fd I (Ac) rigorously purified from nucleic acid does not undergo iron(II) uptake. These facts, together with recent evidence that the interconversion process [3Fe-4S]0 + Fe2+----[4Fe-4S]2+ in the iron-responsive element binding protein (IRE-BP) of eukaryotic cells is controlling protein expression at the level of mRNA [1991, Cell 64, 4771; 1991, Nucleic Acid Res. 19, 1739] leads to the following hypothesis. Fd I is a DNA-binding protein which interacts by single alpha-helix binding in the wide groove of DNA. The binding is regulated by iron(II) levels in the cell. The 7Fe form binds to DNA and represses gene expression. Only the DNA-bound form of the 7Fe Fd I will take up iron(II), not the form free in solution. Iron(II) becomes bound when the [3Fe-4S] cluster is reduced. The 8Fe Fd I thus generated no longer binds DNA and the gene is de-repressed. Sequence comparisons and the crystal structure suggests that the two central turns of the alpha-helix are important elements of the DNA-recognition process and that residues Gln69 and Glu73, which lie on the outer surface of the helix, hydrogen-bond with specific base pairs.  相似文献   

17.
Lin JC  Singh RR  Cox DL 《Biophysical journal》2008,95(7):3259-3268
The mechanism of site-specific recognition of DNA by proteins has been a long-standing issue. The DNA glycosylase MutY, for instance, must find the rare 8-oxoguanine-adenine mismatches among the large number of basepairs in the DNA. This protein has a [4Fe-4S] cluster, which is highly conserved in species as diverse as Escherichia Coli and Homo sapiens. The mixed-valent nature of this cluster suggests that charge transfer may play a role in MutY's function. We have studied the energetics of the charge transfer in Bacillus stearothermophilus MutY-DNA complex using multiscale calculation including density functional theory and molecular dynamics. The [4Fe-4S] cluster in MutY is found to undergo 2+ to 3+ oxidation when coupling to DNA through hole transfer, especially when MutY is near an oxoguanine modified base (oxoG). Employing the Marcus theory for electron transfer, we find near optimal Frank-Condon factors for electron transfer from MutY to oxoguanine modified base. MutY has modest selectivity for oxoguanine over guanine due to the difference in oxidation potential. The tunneling matrix element is significantly reduced with the mutation R149W, whereas the mutation L154F reduces the tunneling matrix element as well as the Frank-Condon factor. Both L154F and R149W mutations are known to dramatically reduce or eliminate repair efficiency. We suggest a scenario where the charge transfer leads to a stabilization of the specific binding conformation, which is likely the recognition mode, thus enabling it to find the damaged site efficiently.  相似文献   

18.
19.
Medlock AE  Dailey HA 《Biochemistry》2000,39(25):7461-7467
Insertion of ferrous iron into protoporphyrin IX is catalyzed by ferrochelatase (EC 4.99.1.1). Human and Schizosaccharomyces pombe forms of ferrochelatase contain a [2Fe-2S] cluster with three of the four coordinating cysteine ligands located within the 30 carboxyl-terminal residues. Saccharomyces cerevisiae ferrochelatase contains no cluster, but has comparable activity. Truncation mutants of S. cerevisiae lacking either the last 37 or 16 amino acids have no enzyme activity. Chimeric mutants of human, S. cerevisiae, and Sc. pombe ferrochelatase have been created by switching the terminal 10% of the carboxy end of the enzyme. Site-directed mutagenesis has been used to introduce the fourth cysteinyl ligand into chimeric mutants that are 90% S. cerevisiae. Activity was assessed by rescue of Deltahem H, a ferrochelatase deficient strain of Escherichia coli, and by enzyme assays. UV-visible and EPR spectroscopy were used to investigate the presence or absence of the [2Fe-2S] cluster. Only 2 of the 13 chimeric mutants that were constructed produced active enzymes. HYB, which is predominately human with the last 40 amino acids being that of S. cerevisiae, is an active protein which does not contain a [2Fe-2S] cluster. The other active chimeric mutant, HSp, is predominately human ferrochelatase with the last 38 amino acids being that of Sc. pombe ferrochelatase. This active mutant contains a [2Fe-2S] cluster, as verified by UV-visible and EPR spectroscopic techniques. No other chimeric proteins had detectable enzyme activity or a [2Fe-2S] cluster. The data are discussed in terms of structural requirements for cluster stability and the role that the cluster plays for ferrochelatase.  相似文献   

20.
Rapid and quantitative reductive coupling of two [2Fe-2S]2+ clusters to form a single [4Fe-4S]2+ cluster on the homodimeric IscU Fe-S cluster scaffold protein has been demonstrated by UV-visible absorption, M?ssbauer, and resonance Raman spectroscopies, using dithionite as the electron donor. Partial reductive coupling was also observed using reduced Isc ferredoxin, which raises the possibility that Isc ferredoxin is the physiological reductant. The results suggest that reductive coupling of adjacent [2Fe-2S]2+ clusters assembled on IscU provides a general mechanism for the final step in the biosynthesis of [4Fe-4S]2+ clusters. The [4Fe-4S]2+ center on IscU can be reduced to a S = 1/2[4Fe-4S]+ cluster (g parallel = 2.06 and g perpendicular = 1.92), but the low midpoint potential (< -570 mV) and instability of the reduced cluster argue against any physiological relevance for the reduced cluster. On exposure to O2, the [4Fe-4S]2+ cluster on IscU degrades via a semistable [2Fe-2S]2+ cluster with properties analogous to those of the [2Fe-2S]2+ center in [2Fe-2S]2+ IscU. It is suggested that the ability of IscU to accommodate either [2Fe-2S]2+ or [4Fe-4S]2+ clusters in response to cellular redox status and/or oxygen levels may provide an effective way to populate appropriately cluster-loaded forms of IscU for maturation of different types of [Fe-S] proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号