首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Cordyceps species, which are used in Chinese traditional medicines, are fungal parasitesof insects. In this study the partial nucleotide sequences of 18 S ribosomal DNA from four Cordyceps species were determined and compared with the sequences of publishedascomycetes. The sequence data support the concept that Cordyceps species belong to thepyrenomycetes. Based on sequence data the phylogenetic tree was constructed using theneighbor-joining (NJ) method. Diversity in the phylogenetic tree was found for Cordyceps species. A new classification of Cordyceps species can be constructed based on thephylogenetic information obtained from such rDNA sequences.  相似文献   

2.
O Gotoh  Y Husimi  S Yabuki  A Wada 《Biopolymers》1976,15(4):655-670
A high-resolution plotter of differential melting profiles of DNA, RNA, or related biopolymers with an on-line mini-computer is described. With this device, more than 15 transition steps were identified in the thermal melting profile of DNA from bacteriophage lambda. These fine structures were found to be reproducible, and some of them disappear in the deletion mutant. To Examine the melting profile, computer simulations for several hypothetical polynucleotide sequences were performed, and compared with experimental data. The sharp peaks that appeared in the differential melting profile of λ DNA may come from some homogeneous sequences of 500 bases or longer.  相似文献   

3.
We have previously described [K. M. Sullivan and D. M. J. Lilley (1986) Cell 47, 817-827] a set of sequences, called C-type inducing sequences, which cause cruciform extrusion by adjacent inverted repeats to occur by an abnormal kinetic pathway involving a large denatured region of DNA. In this paper we apply statistical thermodynamic DNA helix melting theory to these sequences. We find a marked correlation between the ability of sequences to confer C-type cruciform character experimentally and their calculated propensity to undergo cooperative melting, and no exceptions have been found. The correlations are both qualitative and quantitative. Thus the ColE1 flanking sequences behave as single melting units, while the DNA of the S-type plasmid pIRbke8 exhibits no propensity to melt in the region of the bke cruciform. The results of the calculations are also fully consistent with the following experimental observations: 1. the ability of the isolated colL and colR fragments of the ColE1 flanking sequences, as well as the short sequence col30, to confer C-type character; 2. C-type induction by an A + T rich Drosophila sequence; 3. low-temperature cruciform extrusion by an (AT)34 sequence; 4. the effect of changing sequences at a site 90 base pairs (bp) removed from the inverted repeat; 5. the effects of systematic deletion of the colL sequence; and 6. the effects of insertion of various sequences in between the colL sequence and the xke inverted repeat. These studies show that telestability effects on thermal denaturation as predicted from equilibrium helix melting theory of linear DNA molecules may explain all the features that are revealed by studying the extrusion of cruciforms in circular DNA molecules subjected to superhelical stress.  相似文献   

4.
The thermal stability of the Tn10 encoded tetracycline resistance (TET) gene control region is investigated by melting studies using purified DNA restriction fragments containing various amounts of flanking sequences. In order to study the thermodynamic properties of this control region under conditions, where enough flanking DNA is present to mimic the situation in the chromosome, the five step melting process of a 1450-bp DNA fragment is analyzed. Because most of the sequence of this DNA is not known, the assignment of the melting transitions to segments of the DNA is done by an experimental method. This employs the preparation of subfragments from the 1450-bp DNA and comparison of their denaturation profiles with the one of the intact sequence. This approach results in the complete assignment of the five denaturation steps. Rather than from the ends, the unwinding starts from the TET gene control region in the middle of the 1450-bp sequence. A clear correlation between the thermodynamic and genetic properties of this DNA is observed. The regulatory sequence forms a small cooperative unit with the lowest stability in the entire fragment. The thermal denaturation of the TET repressor. TET operator complex reveals, that the TET repressor specifically recognizes the double stranded TET operator DNA and stabilizes this structure by 2.4 degrees C. This results is also discussed as an example of the possible action of denaturing or stabilizing proteins on this genetic control region.  相似文献   

5.
Temperature-Gradient Gel Electrophoresis (TGGE) was employed to determine the thermal stabilities of 28 DNA fragments, 373 bp long, with two adjacent mismatched base pairs, and eight DNAs with Watson-Crick base pairs at the same positions. Heteroduplex DNAs containing two adjacent mismatches were formed by melting and reannealing pairs of homologous 373 bp DNA fragments differing by two adjacent base pairs. Product DNAs were separated based on their thermal stability by parallel and perpendicular TGGE. The polyacrylamide gel contained 3.36 M urea and 19.2 % formamide to lower the DNA melting temperatures. The order of stability was determined in the sequence context d(CXYG).d(CY'X'G) where X.X' and Y.Y" represent the mismatched or Watson-Crick base pairs. The identity of the mismatched bases and their stacking interactions influence DNA stability. Mobility transition melting temperatures (T u) of the DNAs with adjacent mismatches were 1.0-3.6 degrees C (+/-0.2 degree C) lower than the homoduplex DNA with the d(CCAG).d(CTGG) sequence. Two adjacent G.A pairs, d(CGAG).d(CGAG), created a more stable DNA than DNAs with Watson-Crick A.T pairs at the same sites. The d(GA).d(GA) sequence is estimated to be 0.4 (+/-30%) kcal/mol more stable in free energy than d(AA).d(TT) base pairs. This result confirms the unusual stability of the d(GA).d(GA) sequence previously observed in DNA oligomers. All other DNAs with adjacent mismatched base pairs were less stable than Watson-Crick homoduplex DNAs. Their relative stabilities followed an order expected from previous results on single mismatches. Two homoduplex DNAs with identical nearest neighbor sequences but different next-nearest neighbor sequences had a small but reproducible difference in T u value. This result indicates that sequence dependent next neighbor stacking interactions influence DNA stability.  相似文献   

6.
Abstract

For high accuracy classification of DNA sequences through Convolutional Neural Networks (CNNs), it is essential to use an efficient sequence representation that can accelerate similarity comparison between DNA sequences. In addition, CNN networks can be improved by avoiding the dimensionality problem associated with multi-layer CNN features. This paper presents a new approach for classification of bacterial DNA sequences based on a custom layer. A CNN is used with Frequency Chaos Game Representation (FCGR) of DNA. The FCGR is adopted as a sequence representation method with a suitable choice of the frequency k-lengthen words occurrence in DNA sequences. The DNA sequence is mapped using FCGR that produces an image of a gene sequence. This sequence displays both local and global patterns. A pre-trained CNN is built for image classification. First, the image is converted to feature maps through convolutional layers. This is sometimes followed by a down-sampling operation that reduces the spatial size of the feature map and removes redundant spatial information using the pooling layers. The Random Projection (RP) with an activation function, which carries data with a decent variety with some randomness, is suggested instead of the pooling layers. The feature reduction is achieved while keeping the high accuracy for classifying bacteria into taxonomic levels. The simulation results show that the proposed CNN based on RP has a trade-off between accuracy score and processing time.  相似文献   

7.
Summary The technique of forming interspecific DNA heteroduplexes and estimating phylogenetic distances from the depression in their duplex melting temperature has several physical and chemical constraints. These constraints determine the maximum phylogenetic distance that may be estimated by this technique and the most appropriate method of analyzing that distance.Melting curves of self-renatured single copy primate DNAs reveal the presence of components absent from the renaturation products of exactly paired sequences. This observation, which confirms existing literature, challenges a fundamental assumption: that orthologous (i.e., corresponding) DNA sequences in the divergent species are being compared in DNA heteroduplex melting experiments.As a model system, the thermal stabilities of heteroduplexes formed between a human alpha-globin cDNA and four alpha-like globin genes isolated from chimpanzee are qualitatively compared. The results of this comparison show that the cross-hybrids of imperfectly matched gene duplicates from divergent species can contribute to the additional components that are present in renatured single copy DNAs. Single copy DNA, as usually defined, includes sequence duplicates that will obscure phylogenetic comparisons in a mass hybridization of genomes.  相似文献   

8.
IQPNNI: moving fast through tree space and stopping in time   总被引:12,自引:0,他引:12  
An efficient tree reconstruction method (IQPNNI) is introduced to reconstruct a phylogenetic tree based on DNA or amino acid sequence data. Our approach combines various fast algorithms to generate a list of potential candidate trees. The key ingredient is the definition of so-called important quartets (IQs), which allow the computation of an intermediate tree in O(n(2)) time for n sequences. The resulting tree is then further optimized by applying the nearest neighbor interchange (NNI) operation. Subsequently a random fraction of the sequences is deleted from the best tree found so far. The deleted sequences are then re-inserted in the smaller tree using the important quartet puzzling (IQP) algorithm. These steps are repeated several times and the best tree, with respect to the likelihood criterion, is considered as the inferred phylogenetic tree. Moreover, we suggest a rule which indicates when to stop the search. Simulations show that IQPNNI gives a slightly better accuracy than other programs tested. Moreover, we applied the approach to 218 small subunit rRNA sequences and 500 rbcL sequences. We found trees with higher likelihood compared to the results by others. A program to reconstruct DNA or amino acid based phylogenetic trees is available online (http://www.bi.uni-duesseldorf.de/software/iqpnni).  相似文献   

9.
Ogata N  Miura T 《Biochemistry》2000,39(45):13993-14001
DNA is replicated by DNA polymerase semiconservatively in many organisms. Accordingly, the replicated DNA does not become larger than the original DNA (template DNA), implying that replicative synthesis by DNA polymerase alone cannot explain the diversification of primordial simple DNA. We demonstrate that a single-stranded tandem repetitive oligodeoxyribonucleic acid (oligoDNA) composed of a palindromic or quasi-palindromic motif sequence and 25-50% GC content is elongated in vitro to more than 20,000 bases at 70-74 degrees C by the DNA polymerase of the hyperthermophilic archaeon Thermococcus litoralis without a bimolecular primer-template complex. The efficiency of elongation decreased when the palindromic structure of the oligoDNA was destroyed or when the GC content of the oligoDNA was outside the range of 25-50%. The thermal melting transition profile of the oligoDNA, as observed by ultraviolet spectroscopy, exhibited a biphasic curve, reflecting a duplex-hairpin transition at 31-40 degrees C and a hairpin-coil transition at 70-77 degrees C. The optimal reaction temperature for the elongation, for instance, of oligoDNA (AGATATCT)(6) (72 degrees C) was very close to its hairpin-coil transition melting temperature (70.4 degrees C), but was markedly higher than the temperature at which duplex oligoDNA can exist stably (<35.9 degrees C). These results suggest that a hairpin-based "intramolecular primer-template structure" is formed transiently in the oligoDNA, and it is elongated by the DNA polymerase to long DNA through repeated cycles of folding and melting of the hairpin structure. We discuss the implication of this phenomenon, "hairpin elongation", from the standpoint of potential amplification of simple DNA sequences during the evolution of the genome.  相似文献   

10.
11.
A self-complementary nucleotide sequence can form both a unimolecular hairpin and a bimolecular duplex. In this study, the secondary structures of the self-complementary DNA and RNA oligonucleotides with different sequences and lengths were investigated under various solution conditions by gel electrophoresis, circular dichroism (CD) and electron paramagnetic resonance (EPR) spectroscopy and a ultraviolet (UV) melting analysis. The DNA sequences tended to adopt a hairpin conformation at low cation concentrations, but a bimolecular duplex was preferentially formed at an elevated cationic strength. On the other hand, fully matched RNA sequences adopted a bimolecular duplex regardless of the cation concentration. The thermal melting experiments indicated a greater change in the melting temperature of the bimolecular duplexes (by ~20°C) than that of the hairpin (by ~10°C) by increasing the NaCl concentration from 10 mM to 1 M. Hairpin formations were also observed for the palindrome DNA sequences derived from Escherichia coli, but association of the complementary palindrome sequences was observed when spermine, one of the major cationic molecules in a cell, existed at the physiological concentration. The results indicate the role of cations for shifting the structural equilibrium toward a nucleotide assembly and implicate nucleotide structures in cells.  相似文献   

12.
The ability of the B-DNA minor groove ligand Hoechst 33258 to discriminate between prototype curved and straight duplex DNA sequences was investigated by circular dichroism (CD) titrations at the wavelengths of absorbance of the ligand. The sequences were studied either within the framework of the ligated decamers (CA(4)T(4)G)(n) and (CT(4)A(4)G)(n), or within that of the single dodecamers GCA(4)T(4)GC and GCT(4)A(4)GC, to confirm and extend our earlier results based on fluorescence titrations of ligated decamers. A unique, strong binding site is invariantly present in both sequence units. The binding affinity of the drug for the site in the curved A(4)T(4) sequence was found 3- to 4-fold higher compared to the straight sequence. All these features hold true irrespective of the sequence framework, thus confirming that they reflect specific properties of the binding to the two sequences. Ligand binding increases the thermal stability of straight and curved duplex dodecamers to the same extent, thus maintaining the melting temperature differential between the two sequences. However, the different melting patterns and the difference between [total ligand]:[site] ratios needed for site saturation in the two duplexes are in agreement with the difference between binding constants derived from CD measurements.  相似文献   

13.
A simple method for the detection of sequence- and structural-selective ligand binding to nucleic acids is described. The method is based on the commonly used thermal denaturation method in which ligand binding is registered as an elevation in the nucleic acid melting temperature (Tm). The method can be extended to yield a new, higher -throughput, assay by the simple expediency of melting designed mixtures of polynucleotides (or oligonucleotides) with different sequences or structures of interest. Upon addition of ligand to such mixtures at low molar ratios, the Tm is shifted only for the nucleic acid containing the preferred sequence or structure. Proof of principle of the assay is provided using first a mixture of polynucleotides with different sequences and, second, with a mixture containing DNA, RNA and two types of DNA:RNA hybrid structures. Netropsin, ethidium, daunorubicin and actinomycin, ligands with known sequence preferences, were used to illustrate the method. The applicability of the approach to oligonucleotide systems is illustrated by the use of simple ternary and binary mixtures of defined sequence deoxyoligonucleotides challenged by the bisanthracycline WP631. The simple mixtures described here provide proof of principle of the assay and pave the way for the development of more sophisticated mixtures for rapidly screening the selectivity of new nucleic acid binding compounds.  相似文献   

14.
The effect of chromatin non-histone protein on DNA and chromatin stability is investigated by differential thermal denaturation method. 1) Chromatin (rat liver) yields a multiphasic melting profile. The major part of the melting curve of this chromatin is situated at temperatures higher than pure DNA, with a distinct contribution due to nucleosomes melting. A minor part melts at temperatures lower than DNA which may be assigned to chromatin non-histone protein-DNA complex which destabilized DNA structure. 2) Heparin which extracts histones lowers the melting profile of chromatin and one observes also a contribution with a Tm lower that of pure DNA. In contrast, extraction on non-histone proteins by urea supresses the low Tm peak. 3) Reconstitution of chromatin non-histone protein-DNA complexes confirms the existence of a fraction of chromatin non-histone protein which lowers the melting temperature when compared to pure DNA. It is concluded that chromatin non-histone proteins contain different fractions of proteins which are causing stabilizing and destabilizing effect on DNA structure.  相似文献   

15.
We report here a novel method for predicting melting temperatures of DNA sequences based on a molecular-level hypothesis on the phenomena underlying the thermal denaturation of DNA. The model presented here attempts to quantify the energetic components stabilizing the structure of DNA such as base pairing, stacking, and ionic environment which are partially disrupted during the process of thermal denaturation. The model gives a Pearson product-moment correlation coefficient (r) of ∼0.98 between experimental and predicted melting temperatures for over 300 sequences of varying lengths ranging from 15-mers to genomic level and at different salt concentrations. The approach is implemented as a web tool (www.scfbio-iitd.res.in/chemgenome/Tm_predictor.jsp) for the prediction of melting temperatures of DNA sequences.  相似文献   

16.
We have developed and characterized a method for the rapid detection and quantitation of specific DNAs in partially purified extracts of single Drosophila. While the method should be applicable to a number of repetitious DNA sequences, we have used the polypyrimidine DNA sequences (TCTCT)n to develop this technique. Using hydroxyapatite chromatography, we were able to measure the amount of nucleic acid hybrid formed and to obtain a thermal elution profile of the hybrid formed in extracts of single flies. Under a variety of conditions, purified DNA and DNA in partially purified extracts gave essentially identical results. The procedure can be used to detect the presence of rare sequences, or to measure the relative abundance of a prevalent DNA species. 40 different wild type strains of Drosophila melanogaster were examined using this technique and all contain similar amounts of the same polypyrimidine/polypurine sequence. From a small scale screening of different laboratory stocks of D. melanogaster, a variant was found which formed more DNA-DNA hybrid with labelled polypyrimidine tracts than did wild type. The additional hybrid was distinguished by a lower thermal stability than the hybrid formed in wild type.  相似文献   

17.
J E Saffitz  A I Caplan 《Biochemistry》1978,17(17):3487-3495
Chromatin and purified DNA were fractionated by hydroxylapatite thermal chromatography. Fractions of varying thermal stability were tested for the proportions of transcribed sequences and repetitive sequences relative to the unfractionated genome. The first 80--85% of either total chromatin or purified DNA eluted from hydroxylapatite contained the same proportion of hybridizable sequences as total DNA. The remaining 15--20% of chromatin eluting at the highest temperatures was depleted of transcribed sequences. Analysis of the 20% highest melting fraction of purified DNA showed that, while the first two-thirds of this fraction contained the same proportion of transcribed sequences as unfractionated DNA, the last third, comprising about 6% of total DNA, was depleted of active sequences. Although no major differences were detected in nonrepetitive sequence complexity of chromatin fractions, there was a correlation between relative thermal stability and repetitive sequence content in fractions of both chromatin and DNA separated by thermal chromatography. Fragments eluting at higher temperatures contained a greater proportion of repetitive sequences, as indicated by a rapidly renaturing component. Most likely, the latest eluting fractions from both chromatin and purified DNA were enriched for a nontranscribed, highly reiterated, G+C rich satellite component of the chicken genome.  相似文献   

18.
We have developed a phylogeny-based design method that has been used to produce mutated proteins with enhanced thermal stabilities. We previously validated the predictive worth of the method by producing and characterizing mutants in which one original residue or a small number of the original residues had been replaced with the one or the ones found in the phylogenetically predicted “ancestral” sequence. For the current study, this method was used to design a sequence for the deepest nodal position of a phylogenic tree composed of 16 gyrase B-subunit sequences, which was then synthesized and characterized. The sequence was inferred from the sequences of 16 extant DNA gyrases and 3 extant type VI DNA topoisomerases. Genes encoding the inferred sequence and its N-terminal ATPase domain were PCR constructed and expressed in Escherichia coli. The full-length designed protein is slightly less thermally stable than is subunit B from the extant thermophilic Thermus thermophilus DNA gyrase, whereas the thermal stability of the designed ATPase domain is more similar to that of the T. thermophilus ATPase domain. Moreover, the designed ATPase domain has significant catalytic activity. Therefore, even a small set of homologous amino acid sequences contains sufficient information to design a thermally stable and functional protein. Because the isolated designed ATPase domain is more thermally stable and catalytically active than is the sequence containing the most frequently occurring amino acids among the 16 gyrases, the phylogenetic approach was superior (in this case, at least) to the consensus approach when the same data set was used to predict the two sequences.  相似文献   

19.
Denaturation of mouse satellite DNA upon melting of chromatin in solution   总被引:1,自引:0,他引:1  
The denaturation of mouse satellite DNA upon melting of chromatin in solution of low ionic strength has been studied. A procedure for preparation of partially denaturated chromatin was developed which enabled the isolation of double-stranded (non-denatured) DNA sequences according to their thermal stability in chromatin. The content of mouse satellite DNA in these DNA sequences was determined by hybridization with RNA, complementary to satellite DNA in order to find the temperature interval of denaturation of satellite DNA. It was found that the melting temperature of satellite DNA in chromatin was lower than that of the total DNA. The results are discussed in relation to previously reported anomalous behaviour of satellite DNA upon melting of chromatin on hydroxyapatite.  相似文献   

20.
The relative efficiencies of the maximum-parsimony (MP), UPGMA, and neighbor-joining (NJ) methods in obtaining the correct tree (topology) for restriction-site and restriction-fragment data were studied by computer simulation. In this simulation, six DNA sequences of 16,000 nucleotides were assumed to evolve following a given model tree. The recognition sequences of 20 different six-base restriction enzymes were used to identify the restriction sites of the DNA sequences generated. The restriction-site data and restriction-fragment data thus obtained were used to reconstruct a phylogenetic tree, and the tree obtained was compared with the model tree. This process was repeated 300 times. The results obtained indicate that when the rate of nucleotide substitution is constant the probability of obtaining the correct tree (Pc) is generally higher in the NJ method than in the MP method. However, if we use the average topological deviation from the model tree (dT) as the criterion of comparison, the NJ and MP methods are nearly equally efficient. When the rate of nucleotide substitution varies with evolutionary lineage, the NJ method is better than the MP method, whether Pc or dT is used as the criterion of comparison. With 500 nucleotides and when the number of nucleotide substitutions per site was very small, restriction-site data were, contrary to our expectation, more useful than sequence data. Restriction-fragment data were less useful than restriction-site data, except when the sequence divergence was very small. UPGMA seems to be useful only when the rate of nucleotide substitution is constant and sequence divergence is high.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号