首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We described herein the synthesis of second generation glycopeptide dendrimers G2a-g presenting variable amino acids placed internally into the multivalent scaffold. The effect of such structural modulation on recognition processes by Concanavalin A (Con A), was then estimated by enhanced-sensitivity Enzyme-Linked Lectin Assay (ELLA). In a complementary study, glycopeptide dendrons of different valencies and including a l-cysteine residue before the dendritic core (G0SH, G1SH and G2SH), were also synthesized and homodimerized. Then, the disulfide-containing glycopeptide dendrimers generated by this convergent approach (G0(2)S(2), G1(2)S(2) and G2(2)S(2)) were used as Con A inhibitors and assayed by ELLA.  相似文献   

2.
Without the presence of a phosphotyrosyl group, a phage library derived non-phosphorylated cyclic peptide ligand of Grb2-SH2 domain attributed its high affinity and specificity to well-defined and highly favored interactions of its structural elements with the binding pocket of the protein. We have disclosed a significant compensatory role of the Glu(2-) sidechain for the absence of the phosphate functionality on Tyr(0) in the peptide ligand, cyclo(CH(2)CO-Glu(2-)-Leu-Tyr(0)-Glu-Asn-Val-Gly-Met(5+)-Tyr-Cys)-amide (termed G1TE). In this study, we report the importance of hydrophobic residue at the Tyr+5 site in G1TE. Both acidic and basic amino acid substitutes are disfavored at this position, and replacement of Met with beta-tert-butyl-Ala was found to improve the antagonist properties. Besides, the polarity of the cyclization linkage was implicated as important in stabilizing the favored binding conformation. Oxidation of the thioether linkage into sulfoxide facilitated the binding to Grb2-SH2 markedly. Simultaneous modification of the three distant sites within G1TE provided the best agent with an IC(50) of 220 nM, which is among the most potent non-phosphorous- and non-phosphotyrosine-mimic containing Grb2-SH2 domain inhibitors yet reported. This potent peptidomimetic provides a novel template for the development of chemotherapeutic agents for the treatment of erbB2-related cancer. Biological assays on G1TE(Gla(2-)) in which the original residue of Glu(2-) was substituted by gamma-carboxyglutamic acid (Gla) indicated that it could inhibit the interaction between activated GF receptor and Grb2 protein in cell homogenates of MDA-MB-453 breast cancer cells at the 2 microM level. More significantly, both G1TE(Gla(2-)) alone and the conjugate of G1TE(Gla(2-)) with a peptide carrier can effectively inhibit intracellular association of erbB2 and Grb2 in the same cell lines with IC(50) of 50 and 2 microM, respectively.  相似文献   

3.
Antimicrobial dendrimeric peptides.   总被引:2,自引:0,他引:2  
Dendrimeric peptides selective for microbial surfaces have been developed to achieve broad antimicrobial activity and low hemolytic activity to human erythrocytes. The dendrimeric core is an asymmetric lysine branching tethered with two to eight copies of a tetrapeptide (R4) or an octapeptide (R8). The R4 tetrapeptide (RLYR) contains a putative microbial surface recognition BHHB motif (B = basic, H = hydrophobic amino acid) found in protegrins and tachyplesins whereas the octapeptide R8 (RLYRKVYG) consists of an R4 and a degenerated R4 repeat. Antimicrobial assays against 10 organisms in high- and low-salt conditions showed that the R4 and R8 monomers as well as their divalent dendrimers contain no to low activity. In contrast, the tetra- and octavalent R4 and R8 dendrimers are broadly active under either conditions, exhibiting relatively similar potency with minimal inhibition concentrations < 1 microm against both bacteria and fungi. Based on their size and charge similarities, the potency and activity spectrum of the tetravalent R4 dendrimer are comparable to protegrins and tachyplesins, a family of potent antimicrobials containing 17-19 residues. Compared with a series of linearly repeating R4 peptides, the R4 dendrimers show comparable antimicrobial potency, but are more aqueous soluble, more stable to proteolysis, less toxic to human cells and more easily synthesized chemically. These results suggest repeating peptides that cluster the charge and hydrophobic residues may represent a primitive form of microbial pattern-recognition. Incorporating such knowledge in a dendrimeric design therefore presents an attractive approach for developing novel peptide antibiotics.  相似文献   

4.
Glycopeptide dendrimers. Part II.   总被引:1,自引:0,他引:1  
Glycopeptide dendrimers are regularly branched structures containing both carbohydrates and peptides. Various types of these compounds differing in composition and structure are mentioned, together with their practical use spanning from catalysis, transport vehicles to synthetic vaccines. This Part II (for Part I see JeZek J, et al., J. Pept. Sci. 2008; 14: 2-43) covers linear oligomers with variable valency (brush dendrimers, comb dendrimers), sequential oligopeptide carriers SOCn-I and SOCn-II, chitosan-based dendrimers, and brush dendrimers. Other types of glycopeptide dendrimers are self-immolative dendrimers (cascade release dendrimers, domino dendrimers), dendrimers containing omega-amino acids (Gly, beta-Ala, gamma-Abu and epsilon-aminohexanoic acid), etc. Microwave-assisted synthesis of dendrimers and libraries of glycopeptides and glycopeptide dendrimers are also included. Characterization of dendrimers by electromigration methods, mass spectrometry, and time-resolved and nonlinear optical spectroscopy, etc. plays an important role in purity assessment and structure characterization. Physicochemical properties of dendrimers including chirality are given. Stability of dendrimers, their biocompatibility and toxicity are reviewed. Finally, biomedical applications of dendrimers including imaging agents (contrast agents), site-specific drug delivery systems, artificial viruses, synthetic antibacterial, antiviral, and anticancer vaccines, inhibitors of cell surface protein-carbohydrate interactions, intervention with bacterial adhesion, etc. are given. Glycopeptide dendrimers were used also for studying recognition processes, as diagnostics and mimetics, for complexation of different cations, for therapeutic purposes, as immunodiagnostics, and in drug design.  相似文献   

5.
There is strong evidence that a functionally important cluster of amino acids is located on the COOH-terminal portion of the heavy chain of factor Va, between amino acid residues 680 and 709. To ascertain the importance of this region for cofactor activity, we have synthesized five overlapping peptides representing this amino acid stretch (10 amino acids each, HC1-HC5) and tested them for inhibition of prothrombinase assembly and function. Two peptides, HC3 (spanning amino acid region 690-699) and HC4 (containing amino acid residues 695-704), were found to be potent inhibitors of prothrombinase activity with IC(50) values of approximately 12 and approximately 10 microm, respectively. The two peptides were unable to interfere with the binding of factor Va to active site fluorescently labeled Glu-Gly-Arg human factor Xa, and kinetic analyses showed that HC3 and HC4 are competitive inhibitors of prothrombinase with respect to prothrombin with K(i) values of approximately 6.3 and approximately 5.3 microm, respectively. These data suggest that the peptides inhibit prothrombinase because they interfere with the incorporation of prothrombin into prothrombinase. The shared amino acid motif between HC3 and HC4 is composed of Asp(695)-Tyr-Asp-Tyr-Gln(699) (DYDYQ). A pentapeptide with this sequence inhibited both prothrombinase function with an IC(50) of 1.6 microm (with a K(D) for prothrombin of 850 nm), and activation of factor V by thrombin. Peptides HC3, HC4, and DYDYQ were also found to interact with immobilized thrombin. A recombinant factor V molecule with the mutations Asp(695) --> Lys, Tyr(696) --> Phe, Asp(697) --> Lys, and Tyr(698) --> Phe (factor V(2K2F)) was partially resistant to activation by thrombin but could be readily activated by RVV-V activator (factor Va(RVV)(2K2F)) and factor Xa (factor Va(Xa)(2K2F)). Factor Va(RVV)(2K2F) and factor Va(Xa)(2K2F) had impaired cofactor activity within prothrombinase in a system using purified reagents. Our data demonstrate for the first time that amino acid sequence 695-698 of factor Va heavy chain is important for procofactor activation and is required for optimum prothrombinase function. These data provide functional evidence for an essential and productive contribution of factor Va to the activity of prothrombinase.  相似文献   

6.
A nonphosphorylated disulfide-bridged peptide, cyclo(Cys-Glu1-Leu-Tyr-Glu-Asn-Val-Gly-Met-Tyr9-Cys)-amide (termed G1) has been identified, by phage library, that binds to the Grb2-SH2 domain but not the src SH2 domain. Synthetic G1 blocks the Grb2-SH2 domain association (IC50 of 15.5 microM) with natural phosphopeptide ligands. As a new structural motif that binds to the Grb2-SH2 domain in a pTyr-independent manner, the binding affinity of G1 is contributed by the highly favored interactions of its structural elements interacting with the binding pocket of the protein. These interactions involve side-chains of amino acids Glu1, Tyr3, Glu4, Asn5, and Met8. Also a specific conformation is required for the cyclic peptide when bound to the protein. Ala scanning within G1 and molecular modeling analysis suggest a promising model in which G1 peptide binds in the phosphotyrosine binding site of the Grb2-SH2 domain in a beta-turn-like conformation. Replacement of Tyr3 or Asn5 with Ala abrogates the inhibitory activity of the peptide, indicating that G1 requires a Y-X-N consensus sequence similar to that found in natural pTyr-containing ligands, but without Tyr phosphorylation. Significantly, the Ala mutant of Glu1, i.e. the amino acid N-terminal to Y3, remarkably reduces the binding affinity. The position of the Glu1 side-chain is confirmed to provide a complementary role for pTyr3, as demonstrated by the low micromolar inhibitory activity (IC50 = 1.02 microM) of the nonphosphorylated peptide 11, G1(Gla1), in which Glu1 was replaced by gamma-carboxy-glutamic acid (Gla).  相似文献   

7.
The phage library derived, nonphosphorylated and thioether-cyclized peptide, termed G1TE, cyclo(CH(2)CO-Glu(1)-Leu-Tyr(3)-Glu-Asn-Val-Gly-Met-Tyr-Cys(10))-amid e, represents a new structural motif that binds to the Grb2-SH2 domain in a pTyr-independent manner, with an IC(50) of 20 microM. The retention of binding affinity is very sensitive with respect to peptide ring-size alterations and Ala mutations. We demonstrated previously that the Glu(1) side chain and its closely related analogs partially compensate for the absence of the phosphate functionality on Tyr(3), and, based on molecular modeling, these acidic side-chains complex with the Arg67 and Arg86 side-chains of the protein in the binding cavity. In this study we judiciously altered and incorporated various natural and unnatural amino acids as Tyr replacements within the -YEN- motif, and we demonstrate the functional importance and structural requirement of Tyr(3) for effective binding of this novel non-phosphorylated ligand to the Grb2-SH2 domain. The phenyl side-chain moiety and a polar functional group with specific orientation in position Y(3) of the peptide are particularly required. Using SPR binding assays, a submicromolar inhibitor (IC(50) = 0.70 microM) was obtained when Glu(1) was replaced with alpha-aminoadipate and Tyr(3) was replaced with 4-carboxymethyl-Phe, providing peptide 14, G1TE(Adi(1), cmPhe(3)). Peptide 14 also inhibited Grb2/p185(erb)(B-2) protein association in cell homogenates of erbB-2-overexpressing MDA-MA-453 cancer cells at near one micromolar concentrations.  相似文献   

8.
The unique bio-analytical properties of the amino acid tyrosine (Tyr) are the focus of this experiment from the research oriented biochemistry laboratory course at our university. In the present study pK(a(1)), pK(a(2)), and pK(a(3)) values for free Tyr were estimated to be 2.30, 9.40, and 9.97, respectively, when free Tyr was titrated with 1mM NaOH and 1mM HCl using a pH meter. Spectrophotometric analysis of the phenolic side chain pK(a(3)) revealed a value of 10.14, which was consistent with the pK(a)s estimated from the pH meter. The results from this experiment will allow students to compare the free Tyr properties with those present in a protein.  相似文献   

9.
We report here the synthesis of a series of mono- to trivalent N-acetylglucosamine (GlcNAc) derivatives as ligands for the plant lectin wheat germ agglutinin (WGA). Their WGA binding potencies were determined by an established enzyme-linked lectin assay (ELLA) employing microtiter plates with non-covalently immobilized porcine stomach mucin (PSM) as reference ligand and an ELLA with a new GlcNAc derivative covalently immobilized via a thiourea linkage. Comparison of both assays revealed that the type of presentation of GlcNAc residues on the microtiter plates either as part of a glycoprotein or as a covalently immobilized monosaccharide derivative strongly influences the outcome of the assay. Although the apparent dissociation constants K(D)(ELLA) for the interaction of peroxidase-labeled WGA with the microtiter plates are comparable for both surfaces, IC(50) values obtained with the PSM-free ELLA were substantially lower. Even more strikingly, this ELLA displayed a better differentiation between ligands of different valency leading to significantly higher relative inhibitory potencies of multivalent ligands compared to monovalent. Additionally, problems associated with the use of PSM, such as maximum inhibition at considerably less than 100% and poor reproducibility of IC(50) values could be overcome with this type of ELLA.  相似文献   

10.
Replacement of Phe3 in the endogenous delta-opioid selective peptide deltorphin I with four optically pure stereoisomers of the topographically constrained, highly hydrophobic novel amino acid beta-isopropylphenylalanine (beta-iPrPhe) produced four pharmacologically different deltorphin I peptidomimetics. Radiolabeled ligand-binding assays and in vitro biological evaluation indicate that the stereoconfiguration of the iPrPhe residue plays a crucial role in determining the binding affinity, bioactivity and selectivity of [beta-iPrPhe3]deltorphin I analogs: a (2S,3R) configuration of the iPrPhe3 residue in [beta-iPrPhe3]deltorphin I provided the most desirable biological properties with binding affinity (IC50 = 2 nM), bioassay potency (IC50 = 1.23 nM in MVD assay) and exceptional selectivity for the delta-opioid receptor over the mu-opioid receptor (30 000). Further conformational studies based on two-dimensional NMR and computer-assisted molecular modeling suggested a model for the possible bioactive conformation in which the Tyr1 and (2S,3R)-beta-iPrPhe3 residues adopt trans side-chain conformations, and the linear peptide backbone favors a distorted beta-turn conformation.  相似文献   

11.
Glycopeptide dendrimers are branched structures containing both carbohydrates and peptides. Various classes of these compounds differing in composition and structure are mentioned, together with their practical use spanning from catalysis, transport vehicles to synthetic vaccines. The main stress is given to glycopeptide dendrimers, namely multiple antigen glycopeptides (MAGs). In MAGs, the core, branches or both are composed of amino acids or peptides. Other classes of glycodendrimers (PAMAM, polypropylene imine, cyclodextrin, calixarene, etc.) are mentioned too, but to a smaller extent. Their syntheses, physicochemical properties and biological activities are given with many examples. Glycopeptide dendrimers can be used as inhibitors of cell surface protein-carbohydrate interactions, intervention with bacterial adhesion, for studying of recognition processes, diagnostics, imaging and contrast agents, mimetics, for complexation of different cationts, as site-specific molecular delivery systems, for therapeutic purposes, as immunodiagnostics and in drug design. Biomedical applications of glycopeptide dendrimers as drug and gene delivery systems are also given.  相似文献   

12.
The inhibition of hepatic glycogen-associated protein phosphatase-1 (PP1-G(L)) by glycogen phosphorylase a prevents the dephosphorylation and activation of glycogen synthase, suppressing glycogen synthesis when glycogenolysis is activated. Here, we show that a peptide ((280)LGPYY(284)) comprising the last five amino acids of G(L) retains high-affinity interaction with phosphorylase a and that the two tyrosines play crucial roles. Tyr284 deletion abolishes binding of phosphorylase a to G(L) and replacement by phenylalanine is insufficient to restore high-affinity binding. We show that a phosphorylase inhibitor blocks the interaction of phosphorylase a with the G(L) C-terminus, suggesting that the latter interaction could be targeted to develop an anti-diabetic drug.  相似文献   

13.
The present work describes synthetic concepts for the coupling of peptides to polyphenylene dendrimers (PPDs). Novel functionalized cyclopentadienones have been synthesized whose Diels-Alder cycloaddition with various core molecules leads to polyphenylene dendrimers possessing (protected) amino or carboxyl groups. In addition, the resulting functionalized molecules exhibit the characteristic shape-persistence and monodispersity of PPDs. Their functions have been used for the attachment of polylysine to the dendritic scaffold. Three different methods for the decoration of dendrimers with polypeptides are presented. First, polylysine segments are grafted from the surface of the dendrimers employing alpha-amino acid N-carboxyanhydride (NCA) polymerization. Second, the C-terminal carboxyl groups of protected polypeptides are activated and then coupled to the amino groups on the surface of the PPD. Finally, cysteine terminated, unprotected peptide sequences are attached to polyphenylene dendrimers utilizing the addition of the sulfhydryl group of a cysteine to the maleimide functions on the dendrimer surface. Moreover, Diels-Alder cycloaddition of suitably functionalized cyclopentadienons to a desymmetized core molecule allows the design of a dendritic scaffold with a specific number of different anchor groups on its periphery. These approaches are important for the tailoring of new, shape-persistent, polyfunctional multiple antigen conjugates.  相似文献   

14.
2-Aminoethoxydiphenyl borate (2-APB) analogs are potentially better vascular gap junction blockers than others widely used, but they remain to be characterized. Using whole cell and intracellular recording techniques, we studied the actions of 2-APB and its potent analog diphenylborinic anhydride (DPBA) on vascular smooth muscle cells (VSMCs) and endothelial cells in situ of or dissociated from arteriolar segments of the cochlear spiral modiolar artery, brain artery, and mesenteric artery. We found that both 2-APB and DPBA reversibly suppressed the input conductance (G(input)) of in situ VSMCs (IC(50) ≈ 4-8 μM). Complete electrical isolation of the recorded VSMC was achieved at 100 μM. A similar gap junction blockade was observed in endothelial cell tubules of the spiral modiolar artery. Similar to the action of 18β-glycyrrhetinic acid (18β-GA), 2-APB and DPBA depolarized VSMCs. In dissociated VSMCs, 2-APB and DPBA inhibited the delayed rectifier K(+) current (I(K)) with an IC(50) of ~120 μM in the three vessels but with no significant effect on G(input) or the current-voltage relation between -140 and -40 mV. 2-APB inhibition of I(K) was more pronounced at potentials of ≤20 mV than at +40 mV and more marked on the fast component than on the slow component, which was mimicked by 4-aminopyridine but not by tetraethylammonium, nitrendipine, or charybdotoxin. In contrast, 18β-GA caused a linear inhibition of I(K) between 0 to +40 mV, which was similar to the action of tetraethylammonium or charybdotoxin. Finally, the 2-APB-induced inhibition of electrical coupling and I(K) was not affected by the inositol 1,4,5-trisphosphate receptor antagonist xestospongin C. We conclude that 2-APB analogs are a class of potent and reversible vascular gap junction blockers with a weak side effect of voltage-gated K(+) channel inhibition. They could be gap junction blockers superior to 18β-GA only when Ca(2+)-actived K(+) channel inhibition by the latter is a concern but inositol 1,4,5-trisphosphate receptor and voltage-gated K(+) channel inhibitions are not.  相似文献   

15.
A vasoactive intestinal peptide (VIP)-binding protein purified from guinea pig lung membranes (p18) was digested with trypsin, and the amino acid sequence of the peptide fragments was determined. The sequence of six tryptic fragments of p18 was identical with subsequences present in mammalian calmodulin. Authentic porcine brain calmodulin and p18 co-migrated on an sodium dodecyl sulfate-electrophoresis gel and displayed identical chromatographic behavior on a reverse phase high performance liquid chromatography column. The VIP-binding properties of p18 and calmodulin were indistinguishable. Both proteins displayed saturable and apparent high affinity binding of VIP, evidenced by potent inhibition of complexation with [Tyr10-125I]VIP by unlabeled VIP (IC50 = 6.0-8.1 nM). Rat growth hormone releasing factor and a C terminally extended form of VIP ([Leu17]VIP-GKR) also displayed potent inhibition of the binding (IC50 = 6.4 and 4 nM, respectively). These neuropeptides are potential modulators of calmodulin function.  相似文献   

16.
Zhou X  Wang Y  Or PM  Wan DC  Kwan YW  Yeung JH 《Phytomedicine》2012,19(7):648-657
The effects of Danshen and its active components (tanshinone I, tanshinone IIA, dihydrotanshinone and cryptotanshinone) on CYP2D6 activity was investigated by measuring the metabolism of a model CYP2D6 probe substrate, dextromethorphan to dextrorphan in human pooled liver microsomes. The ethanolic extract of crude Danshen (6.25-100 μg/ml) decreased dextromethorphan O-demethylation in vitro (IC(50)=23.3 μg/ml) and the water extract of crude Danshen (0.0625-1 mg/ml) showed no inhibition. A commercially available Danshen pill (31.25-500 μg/ml) also decreased CYP2D6 activity (IC(50)=265.8 μg/ml). Among the tanshinones, only dihydrotanshinone significantly inhibited CYP2D6 activity (IC(50)=35.4 μM), compared to quinidine, a specific CYP2D6 inhibitor (IC(50)=0.9 μM). Crytotanshinone, tanshinone I and tanshinone IIA produced weak inhibition, with IC(20) of 40.8 μM, 16.5 μM and 61.4 μM, respectively. Water soluble components such as salvianolic acid B and danshensu did not affect CYP2D6-mediated metabolism. Enzyme kinetics studies showed that inhibition of CYP2D6 activity by the ethanolic extract of crude Danshen and dihydrotanshinone was concentration-dependent, with K(i) values of 4.23 μg/ml and 2.53 μM, respectively, compared to quinidine, K(i)=0.41 μM. Molecular docking study confirmed that dihydrotanshinone and tanshinone I interacted with the Phe120 amino acid residue in the active cavity of CYP2D6 through Pi-Pi interaction, but did not interact with Glu216 and Asp301, the key residues for substrate binding. The logarithm of free binding energy of dihydrotanshinone (-7.6 kcal/mol) to Phe120 was comparable to quinidine (-7.0 kcal/mol) but greater than tanshinone I (-5.4 kcal/mol), indicating dihydrotanshinone has similar affinity to quinidine in binding to the catalytic site on CYP2D6.  相似文献   

17.
A series of amino acid ureido derivatives as aminopeptidase N (APN/CD13) inhibitors were synthesized and evaluated for their APN inhibitory activities and anti-cancer effects. The results showed that most of these amino acid ureido derivatives exhibited good inhibition against APN, several of which were better than Bestatin. The most active compound 12j (IC(50) = 1.1 μM, compared with Bestatin IC(50) = 8.1 μM) not only possessed much better APN inhibitory activity and anti-proliferation effect on cancer cells, but also exhibited significant block effect of human cancer cell invasion compared with the positive control, Bestatin. These amino acid ureido derivatives could be possibly developed as new APN inhibitors for cancer chemotherapy in the future.  相似文献   

18.
We employed X-irradiation to activate a caged amino acid with a 2-oxoalkyl group. We designed and synthesized tyrosine derivative caged by a 2-oxoalkyl group (Tyr(Oxo)) to evaluate its radiolytic one-electron reduction characteristics in aqueous solution. Upon hypoxic X-irradiation, Tyr(Oxo) released a 2-oxopropyl group to form the corresponding uncaged tyrosine. In addition, radiolysis of dipeptides containing Tyr(Oxo) revealed that the efficiency of radiolytic removal of 2-oxopropyl group increased significantly by the presence of neighboring aromatic amino acids.  相似文献   

19.
The barrier functions of the stratum corneum and the epidermal layers present a tremendous challenge in achieving effective transdermal delivery of drug molecules. Although a few reports have shown that poly(amidoamine) (PAMAM) dendrimers are effective skin-penetration enhancers, little is known regarding the fundamental mechanisms behind the dendrimer-skin interactions. In this Article, we have performed a systematic study to better elucidate how dendrimers interact with skin layers depending on their size and surface groups. Franz diffusion cells and confocal microscopy were employed to observe dendrimer interactions with full-thickness porcine skin samples. We have found that smaller PAMAM dendrimers (generation 2 (G2)) penetrate the skin layers more efficiently than the larger ones (G4). We have also found that G2 PAMAM dendrimers that are surface-modified by either acetylation or carboxylation exhibit increased skin permeation and likely diffuse through an extracellular pathway. In contrast, amine-terminated dendrimers show enhanced cell internalization and skin retention but reduced skin permeation. In addition, conjugation of oleic acid to G2 dendrimers increases their 1-octanol/PBS partition coefficient, resulting in increased skin absorption and retention. Here we report that size, surface charge, and hydrophobicity directly dictate the permeation route and efficiency of dendrimer translocation across the skin layers, providing a design guideline for engineering PAMAM dendrimers as a potential transdermal delivery vector.  相似文献   

20.
A glycopeptide fraction containing glucuronic acid as a component sugar was extracted and purified from squid cartilage to give a single band migrating much slower than hyaluronic acid in cellulose acetate electrophoresis. The molecular weight of the glycopeptide was fairly large since its Kav value in Sephadex G-200 chromatography was 0.18; however, it was soluble in 66% ethanol. This glycopeptide contained glucuronic acid, glucosamine, galactosamine, galactose, and fucose. The total amino acid content was 1.87 μmol of amino acid per mg of the glycopeptide. Threonine, serine and proline represented 80% of the amino acids. Digestion with chondroitinase ABC or reaction with nitrous acid did not result in degradation of the glycopeptide; however, it was completely degraded by reaction with 0.5 M KOH at 37°C. Two hexasaccharides were separated from the alkaline degradation products, and they both contained glucuronic acid, fucose, galactosamine, and reducing terminal glucosamine in the molar ratio, 2:1:2:1. These results indicated that the glycopeptide contains glucuronic acid-containing sugar chains that are distinct from any known glycosaminoglycan.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号