首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cardiovascular disease is the predominant cause of death in diabetic patients. Fibroblasts are one of the major types of cells in the heart or vascular wall. Increased levels of glycated low-density lipoprotein (glyLDL) were detected in diabetic patients. Previous studies in our group demonstrated that oxidized LDL increased the amounts of NADPH oxidase (NOX), plasminogen activator inhibitor-1 (PAI-1), and heat shock factor-1 (HSF1) in fibroblasts. This study examined the expression of NOX, PAI-1, and HSF1 in glyLDL-treated wild-type or HSF1-deficient mouse embryo fibroblasts (MEFs) and in leptin receptor-knockout (db/db) diabetic mice. Treatment with physiologically relevant levels of glyLDL increased superoxide and H2O2 release and the levels of NOX4 and p22phox (an essential component of multiple NOX complexes) in wild-type or HSF1-deficient MEFs. The levels of HSF1 and PAI-1 were increased by glyLDL in wild-type MEFs, but not in HSF1-deficient MEFs. Diphenyleneiodonium (a nonspecific NOX inhibitor) or small interfering RNA for p22phox prevented glyLDL-induced increases in the levels of NOX4, HSF1, or PAI-1 in MEFs. The amounts of NOX4, HSF1, and PAI-1 were elevated in hearts of db/db diabetic mice compared to wild-type mice. The results suggest that glyLDL increased the abundance of NOX4 or p22phox via an HSF1-independent pathway, but that of PAI-1 via an HSF1-dependent manner. NOX4 plays a crucial role in glyLDL-induced expression of HSF1 and PAI-1 in mouse fibroblasts. Increased expression of NOX4, HSF1, and PAI-1 was detected in cardiovascular tissue of diabetic mice.  相似文献   

2.
3.
Atherosclerotic cardiovascular disease is the number one cause of death for adults in Western society. Plasminogen activator inhibitor-1 (PAI-1), the major physiological inhibitor of plasminogen activators, has been implicated in both thrombogenesis and atherogenesis. Previous studies demonstrated that copper-oxidized low-density lipoprotein (C-oLDL) stimulated production of PAI-1 in vascular endothelial cells (EC). The present study examined the involvement of lectin-like oxidized LDL receptor-1 (LOX-1) and Ras/Raf-1/ERK1/2 pathway in the upregulation of PAI-1 in cultured EC induced by oxidized LDLs. The results demonstrated that C-oLDL or FeSO(4)-oxidized LDL (F-oLDL) increased the expression of PAI-1 or LOX-1 in human umbilical vein EC (HUVEC) or coronary artery EC (HCAEC). Treatment with C-oLDL significantly increased the levels of H-Ras mRNA, protein, and the translocation of H-Ras to membrane fraction in EC. LOX-1 blocking antibody, Ras farnesylation inhibitor (FTI-277), or small interference RNA against H-Ras significantly reduced C-oLDL or LDL-induced expression of H-Ras and PAI-1 in EC. Incubation with C-oLDL or F-oLDL increased the phosphorylation of Raf-1 and ERK1/2 in EC compared with LDL or vehicle. Treatment with Raf-1 inhibitor blocked Raf-1 phosphorylation and the elevation of PAI-1 mRNA level in EC induced by C-oLDL or LDL. Treatment with PD-98059, an ERK1/2 inhibitor, blocked C-oLDL or LDL-induced ERK1/2 phosphorylation or PAI-1 expression in EC. The results suggest that LOX-1, H-Ras, and Raf-1/ERK1/2 are implicated in PAI-1 expression induced by oxidized LDLs or LDL in cultured EC.  相似文献   

4.
LOX-1, lectin-like oxidized low-density lipoprotein (LDL) receptor-1, is a single transmembrane receptor mainly expressed on endothelial cells. LOX-1 mediates the uptake of oxidized LDL, an early step in atherosclerosis; however, little is known about whether LOX-1 is involved in angiogenesis during tissue ischemia. Therefore, we examined the role of LOX-1 in ischemia-induced angiogenesis in the hindlimbs of LOX-1 knockout (KO) mice. Angiogenesis was evaluated in a surgically induced hindlimb ischemia model using laser Doppler blood flowmetry (LDBF) and histological capillary density (CD) and arteriole density (AD). After right hindlimb ischemia, the ischemic/nonischemic hindlimb blood flow ratio was persistently lower in LOX-1 KO mice than in wild-type (WT) mice. CD and AD were significantly smaller in LOX-1 KO mice than in WT mice on postoperative day 14. Immunohistochemical analysis revealed that the number of macrophages infiltrating ischemic tissues was significantly smaller in LOX-1 KO mice than in WT mice. The number of infiltrated macrophages expressing VEGF was also significantly smaller in LOX-1 KO mice than in WT mice. Western blot analysis and ROS production assay revealed that LOX- KO mice show significant decrease in Nox2 expression, ROS production and HIF-1α expression, the phosphorylation of p38 MAPK and NF-κB p65 subunit as well as expression of redox-sensitive vascular cell adhesion molecule-1 (VCAM-1) and LOX-1 itself in ischemic muscles, which is supposed to be required for macrophage infiltration expressing angiogenic factor VEGF. Reduction of VEGF expression successively suppressed the phosphorylation of Akt and eNOS, which accelerated angiogenesis, in the ischemic leg of LOX-1 KO mice. Our findings indicate that LOX-1 plays an important role in ischemia-induced angiogenesis by 1) Nox2-ROS-NF-κB activation, 2) upregulated expression of adhesion molecules: VCAM-1 and LOX-1 and 3) promoting macrophage infiltration, which expresses angiogenic factor VEGF.  相似文献   

5.
We previously reported that primary cultures of guinea pig gastric pit cells expressed all of the phagocyte NADPH oxidase components (gp91-, p22-, p67-, p47-, and p40-phox) and could spontaneously release superoxide anion (O(2)(-)). We demonstrate here that pit cells express a nonphagocyte-specific gp91-phox homolog (Mox1) but not gp91-phox. Inclusion of catalase significantly inhibited [(3)H]thymidine uptake during the initial 2 days of culture. Pit cells, matured on day 2, slowly underwent spontaneous apoptosis. Scavenging O(2)(-) and related oxidants by superoxide dismutase plus catalase or N-acetyl cysteine (NAC) and inhibiting Mox1 oxidase by diphenylene iodonium activated caspase 3-like proteases and markedly enhanced chromatin condensation and DNA fragmentation. This accelerated apoptosis was completely blocked by a caspase inhibitor, z-Val-Ala-Asp-CH(2)F. Mox1-derived reactive oxygen intermediates constitutively activated nuclear factor-kappaB, and inhibition of this activity by nuclear factor-kappaB decoy oligodeoxynucleotide accelerated their spontaneous apoptosis. These results suggest that O(2)(-) produced by the pit cell Mox1 oxidase may play a crucial role in the regulation of their spontaneous apoptosis as well as cell proliferation.  相似文献   

6.
Lectin-like oxidized low-density lipoprotein (LDL) receptor-1 (LOX-1) is a receptor for oxidized LDL, and is strongly expressed in endothelial cells at an early stage of atherosclerosis. LOX-1 expression in adipocytes is induced by PPARγ (ligands and appears to be involved in adipocyte cholesterol metabolism. However, the role of adipose tissue LOX-1 in high-fat diet-induced obesity is unknown. We found that mRNA levels of adipose tissue LOX-1 were markedly increased in obese mice fed a high-fat diet (HFD) compared with those fed normal chow. The levels were closely correlated with those of a proinflammatory cytokine, monocyte chemoattractant protein-1 (MCP-1). Then, LOX-1 knockout (LOX-1-KO) and wild-type (WT) mice were fed HFD for 16 weeks. HFD feeding increased the body and mesenteric fat weights similarly in WT and LOX-1-KO mice. HFD-induced expressions of proinflammatory cytokines such as MCP-1, MIP-1α, and IL-6 were significantly less in LOX-1-KO than WT mice. Thus, LOX-1 is required for the HFD-induced expression of proinflammatory cytokines in the adipose tissue of obese mice.  相似文献   

7.
8.
Oxidized LDL (oxLDL) promotes lipid accumulation as well as growth and survival signaling in macrophages. OxLDL uptake is mainly due to scavenger receptors SR-AI/II and CD36. However, other scavenger receptors such as lectin-like oxLDL receptor-1 (LOX-1) may also play a role. We used mice with targeted inactivation of the LOX-1 gene to define the role of this receptor in the uptake of oxLDL and in activation of survival pathways. There was no difference in uptake or degradation of 125I-oxLDL in unstimulated macrophages from wild-type and LOX-1 knockout mice and no difference in the rate of clearance of oxLDL from plasma in vivo. However, when expression of LOX-1 was induced with lysophosphatidylcholine, oxLDL uptake and degradation increased 2-fold in wild-type macrophages but did not change in LOX-1 knockout macrophages. Macrophages lacking LOX-1 showed the same stimulation of PKB phosphorylation and enhancement of survival by oxLDL as wild-type cells. These data show that LOX-1 does not alter the uptake of oxLDL in unstimulated macrophages and is not essential for the pro-survival effect of oxLDL in these cells. However, LOX-1 expression is highly inducible by lysophosphatidylcholine and pro-inflammatory cytokines, and if that occurred in macrophages within atheromas, LOX-1 could substantially increase oxLDL uptake by lesion macrophages.  相似文献   

9.
We report here the presence of an NADPH oxidase (NOX) activity both in intact and in isolated transverse tubules and in triads isolated from mammalian skeletal muscle, as established by immunochemical, enzymatic, and pharmacological criteria. Immunohistochemical determinations with NOX antibodies showed that the gp91(phox) membrane subunit and the cytoplasmic regulatory p47(phox) subunit co-localized in transverse tubules of adult mice fibers with the alpha1s subunit of dihydropyridine receptors. Western blot analysis revealed that isolated triads contained the integral membrane subunits gp91(phox) and p22(phox), which were markedly enriched in isolated transverse tubules but absent from junctional sarcoplasmic reticulum vesicles. Isolated triads and transverse tubules, but not junctional sarcoplasmic reticulum, also contained varying amounts of the cytoplasmic NOX regulatory subunits p47(phox) and p67(phox). NADPH or NADH elicited superoxide anion and hydrogen peroxide generation by isolated triads; both activities were inhibited by NOX inhibitors but not by rotenone. NADH diminished the total thiol content of triads by one-third; catalase or apocynin, a NOX inhibitor, prevented this effect. NADPH enhanced the activity of ryanodine receptor type 1 (RyR1) in triads, measured through [3H]ryanodine binding and calcium release kinetics, and increased significantly RyR1 S-glutathionylation over basal levels. Preincubation with reducing agents or NOX inhibitors abolished the enhancement of RyR1 activity produced by NADPH and prevented NADPH-induced RyR1 S-glutathionylation. We propose that reactive oxygen species generated by the transverse tubule NOX activate via redox modification the neighboring RyR1 Ca2+ release channels. Possible implications of this putative mechanism for skeletal muscle function are discussed.  相似文献   

10.
Gastroesophageal reflux disease complicated by Barrett esophagus (BE) is a major risk factor for esophageal adenocarcinoma (EA). The mechanisms whereby acid reflux may accelerate the progression from BE to EA are not known. We found that NOX1 and NOX5-S were the major isoforms of NADPH oxidase in SEG1-EA cells. The expression of NOX5-S mRNA was significantly higher in these cells than in esophageal squamous epithelial cells. NOX5 mRNA was also significantly higher in Barrett tissues with high grade dysplasia than without dysplasia. Pulsed acid treatment significantly increased H(2)O(2) production in both SEG1-EA cells and BE mucosa, which was blocked by the NADPH oxidase inhibitor apocynin. In SEG1 cells, acid treatment increased mRNA expression of NOX5-S, but not NOX1, and knockdown of NOX5 by NOX5 small interfering RNA abolished acid-induced H(2)O(2) production. In addition, acid treatment increased intracellular Ca(2+) and phosphorylation of cAMP-response element-binding protein (CREB). Acid-induced NOX5-S expression and H(2)O(2) production were significantly inhibited by removal of extracellular Ca(2+) and by knockdown of CREB using CREB small interfering RNA. Two novel CREB-binding elements TGACGAGA and TGACGCTG were identified in the NOX5-S gene promoter. Overexpression of CREB significantly increased NOX5-S promoter activity. Knockdown of NOX5 significantly decreased [(3)H]thymidine incorporation, which was restored by 10(-13) M H(2)O(2). Knockdown of NOX5 also significantly decreased retinoblastoma protein phosphorylation and increased cell apoptosis and caspase-9 expression. In conclusion, in SEG1 EA cells NOX5-S is overexpressed and mediates acid-induced H(2)O(2) production. Acid-induced NOX5-S expression depends on an increase in intracellular Ca(2+) and activation of CREB. NOX5-S contributes to increased cell proliferation and decreased apoptosis.  相似文献   

11.
12.
13.
14.
Presenilin 1 (PS1) plays a pivotal role in Notch signaling and the intracellular metabolism of the amyloid beta-protein. To understand intracellular signaling events downstream of PS1, we investigated in this study the action of PS1 on mitogen-activated protein kinase pathways. Overexpressed PS1 suppressed the stress-induced stimulation of stress-activated protein kinase (SAPK)/c-Jun NH(2)-terminal kinase (JNK) in human embryonic kidney 293 cells. Interestingly, two functionally inactive PS1 mutants, PS1(D257A) and PS1(D385A), failed to inhibit UV-stimulated SAPK/JNK. Furthermore, H(2)O(2-) or UV-stimulated SAPK activity was higher in mouse embryonic fibroblast (MEF) cells from PS1-null mice than in MEF cells from PS(+/+) mice. MEF(PS1(-/-)) cells were more sensitive to the H(2)O(2)-induced apoptosis than MEF(PS1(+/+)) cells. Ectopic expression of PS1 in MEF(PS1(-/-)) cells suppressed H(2)O(2)-stimulated SAPK/JNK activity and apoptotic cell death. Together, our data suggest that PS1 inhibits the stress-activated signaling by suppressing the SAPK/JNK pathway.  相似文献   

15.
Plasminogen activator inhibitor-1 regulates tumor growth and angiogenesis.   总被引:6,自引:0,他引:6  
Elevated expression of plasminogen activator inhibitor-1 (PAI-1) in tumors is associated with a poor prognosis in many cancers. Reduced tumor growth and angiogenesis have also been reported in mice deficient in PAI-1. These results suggest that PAI-1 may be required for efficient angiogenesis and tumor growth. In the present study, we demonstrate that PAI-1 can both enhance and inhibit the growth of M21 human melanoma tumors in nude mice and that this appears to be due to PAI-1 regulation of angiogenesis. Quantitative analysis of angiogenesis in a Matrigel implant assay indicated that in PAI-1 null mice angiogenesis was reduced approximately 60% compared with wild-type mice, while in mice overexpressing PAI-1, angiogenesis was increased nearly 3-fold. Furthermore, addition of PAI-1 to implants in wild-type mice enhanced angiogenesis up to 3-fold at low concentrations but inhibited angiogenesis nearly completely at high concentrations. Together, these data demonstrate that PAI-1 is a potent regulator of angiogenesis and hence of tumor growth and suggest that understanding the mechanism of this activity may lead to the development of important new therapeutic agents for controlling pathologic angiogenesis.  相似文献   

16.
Rupture of vulnerable atheroma often underlies acute coronary syndromes. Vulnerable plaques exhibit a paucity of vascular smooth muscle cells (VSMCs) in the cap. Therefore, decreased VSMC migration into the neointima may predispose to vulnerability. The balance between cell surface plasminogen activator activity and its inhibition [mediated primarily by plasminogen activator inhibitor type 1 (PAI-1)] modulates migration of diverse types of cells. We sought to determine whether increased expression of PAI-1 would decrease migration of VSMCs in vitro and neointimal cellularity in vivo in apolipoprotein E knockout (ApoE(-/-)) mice fed a high-fat diet. Increased vessel wall expression of PAI-1 in transgenic mice was induced with the SM22alpha promoter. VSMC migration through Matrigel in vitro was quantified with laser scanning cytometry. Expression of PAI-1 was increased threefold in the aortic wall of SM22-PAI transgene-positive mice. Neointimal cellularity of vascular lesions was decreased by 26% (p=0.01; n=5 each) in ApoE(-/-) mice with the SM22-PAI transgene compared with ApoE(-/-) mice. VSMCs explanted from transgene-positive mice exhibited twofold greater expression of PAI-1 and their migration was attenuated by 27% (p=0.03). Accordingly, increased expression of PAI-1 protein by VSMCs reduces their migration in vitro and their contribution to neointimal cellularity in vivo.  相似文献   

17.
We investigated the effects of hypoxia on inducible NO synthase (iNOS) activity and expression in rheumatoid arthritis (RA) synoviocytes. We further studied the relationship between nitrosative stress and NADPH oxidase (NOX) in such conditions. Human cultured synoviocytes were treated for 24 hours with IL-1β, TNF-α or neither, and submitted to hypoxia or normoxia for the last 6 hours. Nitrite production and iNOS expression were increased under hypoxia conditions in RA cells in comparison to normoxia. Hypoxia did not potentate the basal and cytokine-induced superoxide productions, while NOXs' subunit expression and p47-phox phosphorylation were increased. Nitrosylation of NOXs and p47-phox was not raised under hypoxia conditions. Finally, peroxynitrite production was significantly increased under hypoxia conditions, in comparison to normoxia. Our results provide evidence for upregulation of iNOS and NOX activities in RA synoviocytes under hypoxia conditions, associated to an increased peroxynitrite production. Synovial cell metabolism under hypoxia conditions might be different from that in normoxia.  相似文献   

18.
Smad7 is an inhibitory molecule induced by members of the transforming growth factor-β (TGF-β) family, including TGF-β, activin, nodal and bone morphogenetic proteins (BMPs). To elucidate the in vivo functions of Smad7, we generated conditional Smad7-knockout mice in which the Mad homology 2 (MH2) domain and the poly (A) signal sequence were flanked with loxP sites (floxed). The Smad7-floxed mice exhibited no obvious phenotype. Smad7 total-null mice on a C57BL/6 background died within a few days of birth, whereas mice with an ICR background developed to adulthood but were significantly smaller than wild-type mice. Unexpectedly, phospho-Smad2 and phospho-Smad3 were decreased in Smad7-deficient mouse embryonic fibroblast (MEF) cells, whereas phospho-Smad1/5/8 was similarly expressed in wild-type and Smad7-deficient MEF cells. Moreover, expression levels of TGF-β type I receptor (ALK5) were higher in Smad7-deficient MEF cells than in wild-type MEF cells. Plasminogen activator inhibitor-1 (PAI-1) and inhibitor of differentiation-1 (Id-1) mRNA were similarly expressed in wild-type and Smad7-deficient MEF cells. Some differences were observed in mitogen-activated protein kinase (MAPK)-signalling between wild-type and Smad7-deficient MEF cells. We demonstrated that Smad7 plays an important role in normal mouse growth and provide a useful tool for analysing Smad7 functions in vivo.  相似文献   

19.
The NADPH oxidase (NOX) family of enzymes oxidase catalyzes the transport of electrons from NADPH to molecular oxygen and generates O(2)(?-), which is rapidly converted into H(2)O(2). We aimed to identify in hepatocytes the protein NOX complex responsible for H(2)O(2) synthesis after α(1)-adrenoceptor (α(1)-AR) stimulation, its activation mechanism, and to explore H(2)O(2) as a potential modulator of hepatic metabolic routes, gluconeogenesis, and ureagenesis, stimulated by the ARs. The dormant NOX2 complex present in hepatocyte plasma membrane (HPM) contains gp91(phox), p22(phox), p40(phox), p47(phox), p67(phox) and Rac 1 proteins. In HPM incubated with NADPH and guanosine triphosphate (GTP), α(1)-AR-mediated H(2)O(2) synthesis required all of these proteins except for p40(phox). A functional link between α(1)-AR and NOX was identified as the Gα(13) protein. Alpha(1)-AR stimulation in hepatocytes promotes Rac1-GTP generation, a necessary step for H(2)O(2) synthesis. Negative cross talk between α(1)-/β-ARs for H(2)O(2) synthesis was observed in HPM. In addition, negative cross talk of α(1)-AR via H(2)O(2) to β-AR-mediated stimulation was recorded in hepatocyte gluconeogenesis and ureagenesis, probably involving aquaporine activity. Based on previous work we suggest that H(2)O(2), generated after NOX2 activation by α(1)-AR lightening in hepatocytes, reacts with cAMP-dependent protein kinase A (PKA) subunits to form an oxidized PKA, insensitive to cAMP activation that prevented any rise in the rate of gluconeogenesis and ureagenesis.  相似文献   

20.
Phospholipase C-gamma1 (PLC-gamma1) is rapidly activated in response to growth factor stimulation and plays an important role in regulating cell proliferation and differentiation through the generation of the second messengers diacylglycerol and inositol 1,4,5-trisphosphate, leading to the activation of protein kinase C (PKC) and increased levels of intracellular calcium, respectively. Given the existing overlap between signaling pathways that are activated in response to oxidant injury and those involved in responding to proliferative stimuli, we investigated the role of PLC-gamma1 during the cellular response to oxidative stress. Treatment of normal mouse embryonic fibroblasts (MEF) with H2O2 resulted in time- and concentration-dependent tyrosine phosphorylation of PLC-gamma1. Phosphorylation could be blocked by pharmacological inhibitors of Src family tyrosine kinases or the epidermal growth factor receptor tyrosine kinase, but not by inhibitors of the platelet-derived growth factor receptor or phosphatidylinositol 3-kinase. To investigate the physiologic relevance of H2O2-induced tyrosine phosphorylation of PLC-gamma1, we compared survival of normal MEF and PLC-gamma1-deficient MEF following exposure to H2O2. Treatment of PLC-gamma1-deficient MEF with H2O2 resulted in rapid cell death, whereas normal MEF were resistant to the stress. Pretreatment of normal MEF with a selective pharmacological inhibitor of PLC-gamma1, or inhibitors of inositol trisphosphate receptors and PKC, increased their sensitivity to H2O2, whereas treatment of PLC-gamma1-deficient MEF with agents capable of directly activating PKC and enhancing calcium mobilization significantly improved their survival. Finally, reconstitution of PLC-gamma1 protein expression in PLC-gamma1-deficient MEF restored cell survival following H2O2 treatment. These findings suggest an important protective function for PLC-gamma1 activation during the cellular response to oxidative stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号