首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Kaku Y 《Uirusu》2004,54(2):237-242
Nipah virus (NiV), emerged in Peninsular Malaysia, caused an outbreak of severe febrile encephalitis in humans and respiratory diseases in pigs between 1998 and 1999. By May of 1999, the death of 105 humans and the culling of about 1.1 million pigs were reported. Fruitbats of Pteropid species were identified as the natural reservoir hosts. The epidemiological studies suggested that NiV was introduced into pig farms by fruitbats, and was than transmitted to humans (mainly pig farmers) and other animals such as dogs, cats and horses. In 2004, NiV reappeared in Bangladesh with greater lethality. In contrast to the Malaysia case, epidemiologic characteristics of this outbreak suggested the possibility of fruitbats-to-person, or person-to-person transmission. In this article, the epidemiological comparison between two outbreaks in Malaysia and Bangladesh, and the new-trends of virological studies of NiV will be discussed.  相似文献   

2.
3.
4.
5.
目的检测新疆伊犁草原地区放养新疆驴的脑组织样本中尼帕病毒(Nipah Virus,NiV)核蛋白(N)基因片段,调查该地区放养新疆驴NiV感染流行状况。方法采用一步法实时荧光定量逆转录聚合酶链反应(one-step Real-Time FQ RT-PCR)对采自新疆伊犁地区草原放养且未接种NiV疫苗的65例新疆驴脑组织进行NiVN基因片段检测。结果新疆驴脑组织标本中未检出NiV N基因片段。结论目前尚无证据表明我国新疆伊犁地区新疆驴中存在NiV感染,提示该地区短时间内爆发该病毒感染可能性较小。  相似文献   

6.
7.
Nipah virus (NiV), a highly pathogenic member of the family Paramyxoviridae, encodes the surface glycoproteins F and G. Since internalization of the NiV envelope proteins from the cell surface might be of functional importance for viral pathogenesis either by regulating cytopathogenicity or by modulating recognition of infected cells by the immune system, we analyzed the endocytosis of the NiV F and G proteins. Interestingly, we found both glycoproteins to be internalized in infected and transfected cells. As endocytosis is normally mediated by tyrosine- or dileucine-dependent signals in the cytoplasmic tails of transmembrane proteins, all potential internalization signals in the NiV glycoproteins were mutated. Whereas the G protein appeared to be constitutively internalized with the bulk flow during membrane turnover, uptake of the F protein was found to be signal mediated. F endocytosis clearly depended on a membrane-proximal YXXPhi motif and was found to be of functional importance for the biological activity of the protein.  相似文献   

8.

Background

Oral infection of infant macaques with simian immunodeficiency virus (SIV) is a useful animal model to test interventions to reduce postnatal HIV transmission via breast-feeding. We previously demonstrated that immunization of infant rhesus macaques with either modified vaccinia virus Ankara (MVA) expressing SIV Gag, Pol and Env, or live-attenuated SIVmac1A11 resulted in lower viremia and longer survival compared to unimmunized controls after oral challenge with virulent SIVmac251 (Van Rompay et al., J. Virology 77:179–190, 2003). Here we evaluate the impact of these vaccines on oral transmission and evolution of SIV envelope variants.

Results

Limiting dilution analysis of SIV RNA followed by heteroduplex mobility assays of the V1–V2 envelope (env) region revealed two major env variants in the uncloned SIVmac251 inoculum. Plasma sampled from all infants 1 week after challenge contained heterogeneous SIV env populations including one or both of the most common env variants in the virus inoculum; no consistent differences in patterns of env variants were found between vaccinated and unvaccinated infants. However, SIV env variant populations diverged in most vaccinated monkeys 3 to 5 months after challenge, in association with the development of neutralizing antibodies.

Conclusions

These patterns of viral envelope diversity, immune responses and disease course in SIV-infected infant macaques are similar to observations in HIV-infected children, and underscore the relevance of this pediatric animal model. The results also support the concept that neonatal immunization with HIV vaccines might modulate disease progression in infants infected with HIV by breast-feeding.  相似文献   

9.
Nipah virus is an emerging zoonotic paramyxovirus that causes severe and often fatal respiratory and neurological disease in humans. The virus was first discovered after an outbreak of encephalitis in pig farmers in Malaysia and Singapore with subsequent outbreaks in Bangladesh or India occurring almost annually. Due to the highly pathogenic nature of NiV, its pandemic potential, and the lack of licensed vaccines or therapeutics, there is a requirement for research and development into highly sensitive and specific diagnostic tools as well as antivirals and vaccines to help prevent and control future outbreak situations.  相似文献   

10.
Based on epidemiological data, it is believed that human-to-human transmission plays an important role in Nipah virus outbreaks. No experimental data are currently available on the potential routes of human-to-human transmission of Nipah virus. In a first dose-finding experiment in Syrian hamsters, it was shown that Nipah virus was predominantly shed via the respiratory tract within nasal and oropharyngeal secretions. Although Nipah viral RNA was detected in urogenital and rectal swabs, no infectious virus was recovered from these samples, suggesting no viable virus was shed via these routes. In addition, hamsters inoculated with high doses shed significantly higher amounts of viable Nipah virus particles in comparison with hamsters infected with lower inoculum doses. Using the highest inoculum dose, three potential routes of Nipah virus transmission were investigated in the hamster model: transmission via fomites, transmission via direct contact and transmission via aerosols. It was demonstrated that Nipah virus is transmitted efficiently via direct contact and inefficiently via fomites, but not via aerosols. These findings are in line with epidemiological data which suggest that direct contact with nasal and oropharyngeal secretions of Nipah virus infected individuals resulted in greater risk of Nipah virus infection. The data provide new and much-needed insights into the modes and efficiency of Nipah virus transmission and have important public health implications with regards to the risk assessment and management of future Nipah virus outbreaks.  相似文献   

11.
Nipah and its close relative Hendra are highly pathogenic zoonotic viruses, storing their ssRNA genome in a helical nucleocapsid assembly formed by the N protein, a major viral immunogen. Here, we report the first cryoEM structure for a Henipavirus RNA-bound nucleocapsid assembly, at 3.5 Å resolution. The helical assembly is stabilised by previously undefined N- and C-terminal segments, contributing to subunit-subunit interactions. RNA is wrapped around the nucleocapsid protein assembly with a periodicity of six nucleotides per protomer, in the “3-bases-in, 3-bases-out” conformation, with protein plasticity enabling non-sequence specific interactions. The structure reveals commonalities in RNA binding pockets and in the conformation of bound RNA, not only with members of the Paramyxoviridae family, but also with the evolutionarily distant Filoviridae Ebola virus. Significant structural differences with other Paramyxoviridae members are also observed, particularly in the position and length of the exposed α-helix, residues 123–139, which may serve as a valuable epitope for surveillance and diagnostics.  相似文献   

12.
Isolation of Nipah virus from Malaysian Island flying-foxes   总被引:17,自引:0,他引:17  
In late 1998, Nipah virus emerged in peninsular Malaysia and caused fatal disease in domestic pigs and humans and substantial economic loss to the local pig industry. Surveillance of wildlife species during the outbreak showed neutralizing antibodies to Nipah virus mainly in Island flying-foxes (Pteropus hypomelanus) and Malayan flying-foxes (Pteropus vampyrus) but no virus reactive with anti-Nipah virus antibodies was isolated. We adopted a novel approach of collecting urine from these Island flying-foxes and swabs of their partially eaten fruits. Three viral isolates (two from urine and one from a partially eaten fruit swab) that caused Nipah virus-like syncytial cytopathic effect in Vero cells and stained strongly with Nipah- and Hendra-specific antibodies were isolated. Molecular sequencing and analysis of the 11,200-nucleotide fragment representing the beginning of the nucleocapsid gene to the end of the glycoprotein gene of one isolate confirmed the isolate to be Nipah virus with a sequence deviation of five to six nucleotides from Nipah virus isolated from humans. The isolation of Nipah virus from the Island flying-fox corroborates the serological evidence that it is one of the natural hosts of the virus.  相似文献   

13.
表达尼帕病毒G囊膜糖蛋白重组牛痘病毒的研究   总被引:1,自引:0,他引:1  
采用牛痘病毒WR株,构建了表达哺乳动物密码子优化的NiV G蛋白基因的重组病毒rWR-NiV-G。Westernblot证实大小为66kDa的重组G蛋白在rWR-NiV-G感染的Hela细胞中获得表达;采用兔抗NiV高免血清间接免疫荧光检测重组痘病毒表达G蛋白显示出良好的特异免疫反应原性。rWR-NiV-G感染NiV敏感的BHK细胞系,并与NiV融合蛋白F共同表达,可形成强烈细胞融合现象。rWR-NiV-G感染免疫BALB/c小鼠,可诱导显著的NiV G蛋白特异体液免疫反应。以原核表达NiV G蛋白片段为包被抗原,间接ELISA检测rWR-NiV-G感染免疫小鼠血清中的G蛋白特异抗体,具有良好的敏感性和特异性。同时,rWR-NiV-G感染免疫小鼠血清中的G蛋白特异抗体可有效中和NiV囊膜蛋白F和G介导的伪型VSV重组病毒侵入NiV易感宿主细胞的感染性。结果表明,重组牛痘病毒表达的NiV G蛋白有良好的免疫原性和生物学活性功能,为进一步深入研究NiV G蛋白生物学功能、免疫原性及重组活载体疫苗研究奠定了重要基础。  相似文献   

14.
Laboratory diagnosis of Nipah and Hendra virus infections   总被引:11,自引:0,他引:11  
Although Hendra and Nipah viruses emerged to cause novel zoonotic infections only recently, there now exists a strong but poorly documented diagnostic capability for both. This review gives an overview of the development of the tests, the tests currently recommended, their shortcomings and the perceived priorities for needed test improvements.  相似文献   

15.
Human Nipah virus (NiV) infection, often fatal in Bangladesh, is primarily transmitted by drinking raw date palm sap contaminated by Pteropus bats. We assessed the impact of a behavior change communication intervention on reducing consumption of potentially NiV-contaminated raw sap. During the 2012–2014 sap harvesting seasons, we implemented interventions in two areas and compared results with a control area. In one area, we disseminated a “do not drink raw sap” message and, in the other area, encouraged only drinking sap if it had been protected from bat contamination by a barrier (“only safe sap”). Post-intervention, 40% more respondents in both intervention areas reported knowing about a disease contracted through raw sap consumption compared with control. Reported raw sap consumption decreased in all areas. The reductions in the intervention areas were not significantly greater compared to the control. Respondents directly exposed to the “only safe sap” message were more likely to report consuming raw sap from a protected source than those with no exposure (25 vs. 15%, OR 2.0, 95% CI 1.5–2.6, P < 0.001). While the intervention increased knowledge in both intervention areas, the “only safe sap” intervention reduced exposure to potentially NiV-contaminated sap and should be considered for future dissemination.  相似文献   

16.
Complement is an innate immune response system that most animal viruses encounter during natural infections. We have tested the role of human complement in the neutralization of virus particles harboring the Nipah virus (NiV) glycoproteins. A luciferase-expressing vesicular stomatitis virus (VSV) pseudotype that contained the NiV fusion (F) and attachment (G) glycoproteins (NiVpp) showed dose- and time-dependent activation of human complement through the alternative pathway. In contrast to our findings with other paramyxoviruses, normal human serum (NHS) alone did not neutralize NiVpp infectivity in vitro, and electron microscopy demonstrated no significant deposition of complement component C3 on particles. This lack of NiVpp neutralization by NHS was not due to a global inhibition of complement pathways, since complement was found to significantly enhance neutralization by antibodies specific for the NiV F and G glycoproteins. Complement components C4 and C1q were necessary but not sufficient by themselves for the enhancement of antibody neutralization. Human complement also enhanced NiVpp neutralization by a soluble version of the NiV receptor EphrinB2, and this depended on components in the classical pathway. The ability of complement to enhance neutralization fell into one of two profiles: (i) anti-F monoclonal antibodies showed enhancement only at high and not low antibody concentrations, and (ii) anti-G monoclonal antibodies and EphrinB2 showed enhancement at both high and very low levels of antibody (e.g., 3.1 ng) or EphrinB2 (e.g., 2.5 ng). Together, these data establish the importance of human complement in the neutralization of particles containing the NiV glycoproteins and will help guide the design of more effective therapeutics that harness the potency of complement pathways.  相似文献   

17.
The ultrastructure of Hendra and Nipah viruses is described in cultured cells, pigs, horses and humans. Differences in ultrastructure between the viruses are evident within infected cell cultures and lungs from infected amplifier hosts. These differences are important in viral identification and differentiation and understanding the pathogenesis of disease.  相似文献   

18.
19.
Lou Z  Xu Y  Xiang K  Su N  Qin L  Li X  Gao GF  Bartlam M  Rao Z 《The FEBS journal》2006,273(19):4538-4547
The Nipah and Hendra viruses are highly pathogenic paramyxoviruses that recently emerged from flying foxes to cause serious disease outbreaks in humans and livestock in Australia, Malaysia, Singapore and Bangladesh. Their unique genetic constitution, high virulence and wide host range set them apart from other paramyxoviruses. These characteristics have led to their classification into the new genus Henpavirus within the family Paramyxoviridae and to their designation as Biosafety Level 4 pathogens. The fusion protein, an enveloped glycoprotein essential for viral entry, belongs to the family of class I fusion proteins and is characterized by the presence of two heptad repeat (HR) regions, HR1 and HR2. These two regions associate to form a fusion-active hairpin conformation that juxtaposes the viral and cellular membranes to facilitate membrane fusion and enable subsequent viral entry. The Hendra and Nipah virus fusion core proteins were crystallized and their structures determined to 2.2 A resolution. The Nipah and Hendra fusion core structures are six-helix bundles with three HR2 helices packed against the hydrophobic grooves on the surface of a central coiled coil formed by three parallel HR1 helices in an oblique antiparallel manner. Because of the high level of conservation in core regions, it is proposed that the Nipah and Hendra virus fusion cores can provide a model for membrane fusion in all paramyxoviruses. The relatively deep grooves on the surface of the central coiled coil represent a good target site for drug discovery strategies aimed at inhibiting viral entry by blocking hairpin formation.  相似文献   

20.
In the paramyxovirus cell entry process, receptor binding triggers conformational changes in the fusion protein (F) leading to viral and cellular membrane fusion. Peptides derived from C-terminal heptad repeat (HRC) regions in F have been shown to inhibit fusion by preventing formation of the fusogenic six-helix bundle. We recently showed that the addition of a cholesterol group to HRC peptides active against Nipah virus targets these peptides to the membrane where fusion occurs, dramatically increasing their antiviral effect. In this work, we report that unlike the untagged HRC peptides, which bind to the postulated extended intermediate state bridging the viral and cell membranes, the cholesterol tagged HRC-derived peptides interact with F before the fusion peptide inserts into the target cell membrane, thus capturing an earlier stage in the F-activation process. Furthermore, we show that cholesterol tagging renders these peptides active in vivo: the cholesterol-tagged peptides cross the blood brain barrier, and effectively prevent and treat in an established animal model what would otherwise be fatal Nipah virus encephalitis. The in vivo efficacy of cholesterol-tagged peptides, and in particular their ability to penetrate the CNS, suggests that they are promising candidates for the prevention or therapy of infection by Nipah and other lethal paramyxoviruses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号