首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Recruitment of lysozyme to a digestive function in ruminant artiodactyls is associated with amplification of the gene. At least four of the approximately ten genes are expressed in the stomach, and several are expressed in nonstomach tissues. Characterization of additional lysozymelike sequences in the bovine genome has identified most, if not all, of the members of this gene family. There are at least six stomachlike lysozyme genes, two of which are pseudogenes. The stomach lysozyme pseudogenes show a pattern of concerted evolution similar to that of the functional stomach genes. At least four nonstomach lysozyme genes exist. The nonstomach lysozyme genes are not monophyletic. A gene encoding a tracheal lysozyme was isolated, and the stomach lysozyme of advanced ruminants was found to be more closely related to the tracheal lysozyme than to the stomach lysozyme of the camel or other nonstomach lysozyme genes of ruminants. The tracheal lysozyme shares with stomach lysozymes of advanced ruminants the deletion of amino acid 103, and several other adaptive sequence characteristics of stomach lysozymes. I suggest here that tracheal lysozyme has reverted from a functional stomach lysozyme. Tracheal lysozyme then represents a second instance of a change in lysozyme gene expression and function within ruminants. Correspondence to: D.M. Irwin  相似文献   

3.
4.
The High-Mobility Group Box (HMGB) proteins are highly abundant proteins with both nuclear and extracellular roles in key biological processes. In mammals, three family members are present: HMGB1, HMGB2 and HMGB3. We characterized the HMGB family in zebrafish and report a detailed phylogenetic analysis of HMGB proteins. The B1, B2, and B3 subfamilies are present in cartilaginous fish, bony fish, and tetrapods, while jawless fish sequences emerge as basal to the gene family expansion. Two co-orthologs of each mammalian HMGB gene are present in zebrafish. All six zebrafish hmgb genes are maternally expressed, but huge differences in expression levels exist during embryonic development. The hmgb2a/hmgb2b genes are the most highly expressed, while hmgb3b is expressed at the lowest level. Remarkably, hmgb3 genes are not present in fugu, medaka, Tetraodon and stickleback. Our analysis highlights substantial overlaps, but also subtle differences and specificities in the expression patterns of the zebrafish hmgb genes.  相似文献   

5.
Evolution and nomenclature of the zona pellucida gene family   总被引:8,自引:0,他引:8  
Three subfamilies of genes are acknowledged within the zona pellucida (ZP) gene family. At present, these subfamilies each have two names that are used interchangeably: ZPA or ZP2, ZPB or ZP1, and ZPC or ZP3. The ZPA genes encode the longest protein sequences and the ZPC genes the shortest. Recently, several sequences, which have no clear relationship to the three subfamilies, have been identified. These sequences include two paralogous ZP genes from Xenopus laevis and a single gene from the fish Oryzias latipes. We have conducted extensive phylogenetic analyses of the known ZP genes. As well as establishing the evolutionary relationships among these genes, the analyses make it clear that the dual nomenclature system is no longer feasible, because major paralogous groups are present in the ZPB (ZP1) family of genes of amniotes. We propose a unified system of nomenclature for the ZP gene family that removes the existing ambiguities.  相似文献   

6.
Evolution of the multifaceted eukaryotic akirin gene family   总被引:1,自引:0,他引:1  

Background  

Akirins are nuclear proteins that form part of an innate immune response pathway conserved in Drosophila and mice. This studies aim was to characterise the evolution of akirin gene structure and protein function in the eukaryotes.  相似文献   

7.
Cyclins are key regulators of cell cycle progression. Previous studies have shown that cyclin genes in plants can be divided into 10 groups. However, because those studies only focused on genes from two well-known model plants (i.e., Arabidopsis thaliana (L.) Heynh. and Oryza sativa L.), it remains unclear whether the 10 groups are reasonably defined. In this study, by analyzing the genomes of 10 representative plants (Chlamydomonas reinhardtii P. A. Dang, Physcomitrella patens(Hedw.) Bruch & Schimp., Selaginella moellendorffii Hieron., Picea abies (L.) H. Karst., Amborella trichopoda Baill., A. thaliana, Populus trichocarpa Torr. & A. Gray ex Hook., Vitis vinifera L., O. sativa, and Sorghum bicolor (L.) Moench), we estimated the phylogenetic relationships of plant cyclins and investigated their evolutionary patterns. We confirmed that plant cyclins can be classified into 10 groups, although only eight ancestral genes may have existed in the most recent common ancestor of extant green plants. We also found that, due to the frequent occurrences of gene duplication events, several groups have expanded extensively in seed plants and, particularly, flowering plants, so that multiple genes belonging to different subgroups are present in a species. Reconciliation of the evolutionary histories of these groups and subgroups further led to the identification of evolutionarily highly conserved and rapidly duplicating gene lineages. These results will guide the classification and nomenclature of plant cyclins and help understand the conservativeness and variation in their functions.  相似文献   

8.
The phylogeny of interleukin-1 family genes shows that human interleukin-1 (IL-1) is more closely related to IL-1 of the bovine than to IL-1 of the mouse, whereas human interleukin-1 (IL-1) is more closely related to IL-1 of the mouse than to IL-1 of the bovine. The IL-1 receptor antagonist (IL-1) shows homology to the C-terminal region of both IL-1 and IL-1. In the C-terminal region, the IL-1 genes of human and mouse have diverged more from each other at nonsynonymous sites than have either IL-1 or IL-1; because the same pattern is not seen at synonymous sites, it must be due not to a difference in mutation rate but rather to a greater degree of functional constraint on this region in the IL-1 and IL-1 proteins than in the IL-1 protein. But synonymous sites in IL-1 of mouse have evolved more rapidly than in IL-1 of human, indicating a higher rate of mutation in the former gene. In the N-terminal region of the protein, nonsynonymous sites have evolved at similar rates in IL-1 and IL-1. The first exon of the IL-1 gene, which encodes the leader peptide, shows evidence of homology with the first exon of IL-1, which is not translated. Thus, it seems likely that IL-1 evolved by duplication of an IL-1 gene and loss of expression of exons 2–4. Correspondence to: A.L. Hughes  相似文献   

9.
Evolution of the rat immunoglobulin gamma heavy-chain gene family   总被引:2,自引:0,他引:2  
M Brüggemann 《Gene》1988,74(2):473-482
The sequences of the four immunoglobulin gamma heavy chains of the rat (gamma 1, gamma 2a, gamma 2b, gamma 2c) have been determined. These sequences reveal that the rat genes have evolved differently from the closely related mouse gamma genes (gamma 1, gamma 2a, gamma 2b, gamma 3): in rat two of the four genes (gamma 2a and gamma 1) are 94% homologous to each other and best resemble the single mouse gamma 1 gene. Rat gamma 2b is equivalent to the mouse gamma 2a/gamma 2b pair as regards both nucleotide sequence and antibody effector functions whilst rat gamma 2c resembles mouse gamma 3. In evolutionary terms this suggests the existence of a set of three common C gamma genes before separation of rat and mouse as individual species. In addition, two independent duplication events must have occurred after species separation affecting different constant regions; this yielded rat gamma 2a and gamma 1 as a recently evolved pair and mouse gamma 2a and gamma 2b as a different pair. Furthermore, the sequence comparisons reveal several other features of interest; rat IgG2b lacks two amino acids in CH1 which are conserved in all other sequenced gamma chains. Residues believed to be essential for monocyte interaction (FcRI) are retained only in rat gamma 2b and not in the other rat gamma genes whilst a particular motif involved in C1q interaction shows a variation in both rat IgG1 and rat IgG2a which has not been observed previously.  相似文献   

10.
11.
12.
CpG islands are discrete regions of DNA with significantly greater frequencies of CpG doublets than bulk genomic DNA. They are most frequently associated with the 5'-ends of housekeeping genes and are involved in the regulation of their expression. In this study, the structure and evolution of CpG islands within genes of the myc family were evaluated with the protein-coding sequences of animals and their transducing viruses. These evaluations relied on a gene tree for the entire myc family to test the origins of CpG islands within their two protein-coding exons. Overall, CG-very rich and CG-rich islands are associated with exon 2 of the different myc genes of warm-blooded vertebrates and with exon 3 of the N-myc and s-myc sequences of mammals, but not birds. These overall distributions of well-developed islands can be related to the major transitions of the CG-rich genomes of warm-blooded vertebrates from the CG-poor ones of other animals. In turn, the greater variability of well-developed islands within exon 3 of the N-myc gene and among the different retrogenes of the myc family can be attributed to their reduced functional constraints, as evidenced by their limited and very restricted patterns of expression, respectively.  相似文献   

13.
Plant defensins are small, diverse, cysteine-rich peptides, belonging to a group of pathogenesis-related defense mechanism proteins, which can provide a barrier against a broad range of pathogens. In this study, 51 defensin-like (DEFL) genes in Gramineae, including brachypodium, rice, maize and sorghum were identified based on bioinformatics methods. Using the synteny analysis method, we found that 21 DEFL genes formed 30 pairs of duplicated blocks that have undergone large-scale duplication events, mostly occurring between species. In particular, some chromosomal regions are highly conserved in the four grasses. Using mean Ks values, we estimated the approximate time of divergence for each pair of duplicated regions and found that these regions generally diverged more than 40 million years ago (Mya). Selection pressure analysis showed that the DEFL gene family is subjected to purifying selection. However, sliding window analysis detected partial regions of duplicated genes under positive selection. The evolutionary patterns within DEFL gene families among grasses can be used to explore the subsequent functional divergence of duplicated genes and to further analyse the antimicrobial effects of defensins during plant development.  相似文献   

14.
15.
Analysis of nucleotide sequences of the human glycophorin A (GPA) and glycophorin B (GPB) genes has indicated that the GPA gene most closely resembles the ancestral gene, whereas the GPB gene likely arose from the GPA gene by homologous recombination. To study the evolution of the glycophorin gene family in the hominoid primates, restricted DNA on Southern blots from man, pygmy chimpanzee, common chimpanzee, gorilla, orangutan, and gibbon was probed with cDNA fragments encoding the human GPA and GPB coding and 3-untranslated regions. This showed the presence in all of the hominoid primates of at least one GPA-like gene. In addition, at least one GPB-like gene was detected in man, both chimpanzee species, and gorilla, strongly suggesting that the event that produced the GPB gene occurred in the common ancestor of man-chimpanzee-gorilla. An unexpected finding in this study was the conservation ofEcoRI restriction sites relative to those of the other four enzymes used; the significance of this observation is unclear, but raises the question of nonrandomness ofEcoRI restriction sites in noncoding regions. Further analysis of the evolution of this multigene family, including nucleotide sequence analysis, will be useful in clarification of the evolutionary relationships of the hominoid primates, in correlation with the structure and function of the glycophorin molecules, and in assessment of the role of evolution in the autogenicity of glycophorin determinants.This work was supported in part by National Institutes of Health Grants AM33463 and CA33000.  相似文献   

16.
Katsura Y  Satta Y 《PloS one》2011,6(6):e20365
The evolutionary mode of a multi-gene family can change over time, depending on the functional differentiation and local genomic environment of family members. In this study, we demonstrate such a change in the melanoma antigen (MAGE) gene family on the mammalian X chromosome. The MAGE gene family is composed of ten subfamilies that can be categorized into two types. Type I genes are of relatively recent origin, and they encode epitopes for human leukocyte antigen (HLA) in cancer cells. Type II genes are relatively ancient and some of their products are known to be involved in apoptosis or cell proliferation. The evolutionary history of the MAGE gene family can be divided into four phases. In phase I, a single-copy state of an ancestral gene and the evolutionarily conserved mode had lasted until the emergence of eutherian mammals. In phase II, eight subfamily ancestors, with the exception for MAGE-C and MAGE-D subfamilies, were formed via retrotransposition independently. This would coincide with a transposition burst of LINE elements at the eutherian radiation. However, MAGE-C was generated by gene duplication of MAGE-A. Phase III is characterized by extensive gene duplication within each subfamily and in particular the formation of palindromes in the MAGE-A subfamily, which occurred in an ancestor of the Catarrhini. Phase IV is characterized by the decay of a palindrome in most Catarrhini, with the exception of humans. Although the palindrome is truncated by frequent deletions in apes and Old World monkeys, it is retained in humans. Here, we argue that this human-specific retention stems from negative selection acting on MAGE-A genes encoding epitopes of cancer cells, which preserves their ability to bind to highly divergent HLA molecules. These findings are interpreted with consideration of the biological factors shaping recent human MAGE-A genes.  相似文献   

17.
Vertebrate evolution has been largely driven by the duplication of genes that allow for the acquisition of new functions. The ATP-binding cassette (ABC) proteins constitute a large and functionally diverse family of membrane transporters. The members of this multigene family are found in all cellular organisms, most often engaged in the translocation of a wide variety of substrates across lipid membranes. Because of the diverse function of these genes, their large size, and the large number of orthologs, ABC genes represent an excellent tool to study gene family evolution. We have identified ABC proteins from the sea squirt (Ciona intestinalis), zebrafish (Danio rerio), and chicken (Gallus gallus) and, using phylogenetic analysis, identified those genes with a one-to-one orthologous relationship to human ABC proteins. All ABC protein subfamilies found in Ciona and zebrafish correspond to the human subfamilies, with the exception of a single ABCH subfamily gene found only in zebrafish. Multiple gene duplication and deletion events were identified in different lineages, indicating an ongoing process of gene evolution. As many ABC genes are involved in human genetic diseases, and important drug transport phenotypes, the understanding of ABC gene evolution is important to the development of animal models and functional studies.  相似文献   

18.
19.
20.
Studies at the nucleotide level on the nuclear flower development gene cycloidea (cyc) in seven Antirrhinum, two Misopates, one Linaria, one Cymbalaria, and one Digitalis species revealed that cyc is a member of a gene family composed of at least five apparently functional genes. The estimated ages of the duplication events that created this gene family are from 7.5 Myr to more than 75 Myr. We also report the first estimates of DNA sequence diversity for species of Antirrhinum and Misopates. Low between-species variability suggests that this group of species may have diverged recently.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号