首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Intracellular synthesis of measles virus-specified polypeptides.   总被引:20,自引:15,他引:5       下载免费PDF全文
The intracellular synthesis of measles-specified polypeptides was examined by means of polyacrylamide gel electrophoresis of cell extracts. Since measles virus does not efficiently shut off host-cell protein synthesis, high multiplicities of infection were used to enable viral polypeptides to be detected against the high background of cellular protein synthesis. The cytoplasm of infected cells contained viral structural polypeptides with estimated molecular weights of 200,000, 80,000, 70,000, 60,000, 41,000, and 37,000. All of these structural polypeptides, with the exception of P1, the only virion glycoprotein (molecular weight congruent to 80,000), were also found in the nuclei. In addition, two nonstructural polypeptides with estimated molecular weights of 74,000 and 72,000 were also present in the cytoplasm of infected cells. The initial synthesis of the smaller, nonstructural polypeptide began later in infection than the structural polypeptides. Pulse-chase experiments failed to detect any precursor-product relationships. The intracellular glycosylation and phosphorylation of the viral polypeptides were found to be similar to those found in purified virions.  相似文献   

2.
Purified measles virus was obtained from [35S]methionine-labeled cells infected at 33 degrees C and maintained in the absence of fetal calf serum. The pellet that was produced by a single high-speed ultracentrifuge spin of culture medium contained virus of purity sufficient for structural analysis. Purified virions contain seven polypeptides with estimated molecular weights of: L, 200,000; G, 80,000; P2, 70,000; NP, 60,000; A, 43,000; F1, 41,000; and M, 37,000, as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis under reducing conditions. Treatment of virions with 0.25% trypsin resulted in a less dense particle which lacked polypeptides G and F1. Solubilization of the viral membrane with the detergent Triton X-100 in low-salt buffer resulted in the loss of the G polypeptide, whereas in the presence of 1 M KCl, Triton X-100 also removed most of the M polypeptide. The nucleocapsids (p = 1.3) obtained from virions treated with Triton X-100 and 1 M KCl contained the L, P2, NP, and M polypeptides. Nucleocapsids isolated from the cytoplasm of infected cells were predominantly composed of the NP polypeptide with smaller amounts of either polypeptide P2 or novel polypeptides, related to NP, with estimated molecular weights of 56,000 to 58,000 and 45,000 to 46,000. A significant amount of polypeptide L was always found in association with nucleocapsids isolated either from virions or from the cytoplasm of infected cells. A membrane component containing the viral membrane polypeptides G, F1, and M was also isolated from infected cells. The data presented here thus suggest that L is an integral part of the nucleocapsid complex. In addition, 37,000-molecular-weight polypeptide (M) appears to have the function described for the matrix proteins of other paramyxoviruses.  相似文献   

3.
M Bremont  J Cohen    M A McCrae 《Journal of virology》1988,62(6):2183-2185
Polyacrylamide gel analysis of the structural polypeptides of purified group C virions allowed six major proteins to be identified. Of these, two (52,000- and 39,000-molecular-weight polypeptides) were shown to be in the outer virion shell as judged by the ability to strip them from virions by treatment with EDTA. Treatment of purified particles with endo-beta-N-acetylglucosaminidase F showed that the 39,000-molecular-weight outer shell polypeptide is probably posttranslationally glycosylated. Serological cross-comparison of groups A and C by using Western blotting (immunoblotting) extended the previously demonstrated lack of cross-reaction for the group antigen to show that none of the structural polypeptides cross-reacted. Possible implications of these findings for the epidemiology of rotaviruses are discussed.  相似文献   

4.
Biochemical mapping of the simian rotavirus SA11 genome   总被引:24,自引:18,他引:6       下载免费PDF全文
  相似文献   

5.
Monoclonal antibodies to herpes simplex virus type 2 were found to precipitate different numbers of radiolabeled polypeptides from lysates of virus-infected cells. Antibodies directed against two viral glycoproteins were characterized. Antibodies from hybridoma 17 alpha A2 precipitated a 60,000-molecular-weight polypeptide which chased into a 66,000- and 79,000-molecular-weight polypeptide. All three polypeptides labeled in the presence of [3H]glucosamine and had similar tryptic digest maps. The 60,000-molecular-weight polypeptide also chased into a 31,000-molecular-weight species which did not label with [3H]glucosamine. Antibodies from hybridoma 17 beta C2 precipitated a 50,000-molecular-weight polypeptide which chased into a 56,000- and 80,000-molecular weight polypeptide. These polypeptides also shared a similar tryptic digest map and labeled with [3H]glucosamine. Both monoclonal antibodies were herpes simplex virus type 2 specific. The viral proteins precipitated by 17 alpha A2 antibodies had characteristics similar to those reported for glycoprotein E, whereas the proteins precipitated by 17 beta C2 antibodies appeared to represent a glycoprotein not previously described. This glycoprotein should be tentatively designated glycoprotein F.  相似文献   

6.
The United Kingdom tissue-adapted bovine rotavirus growing in African green monkey kidney (BSC-1) cells was selected as a model system with which to study the detailed molecular virology of rotavirus replication. Study of the kinetics of infectious virus production revealed a fairly rapid replication cycle, with maximum yield of virus after 10 to 12 h at 37 degrees C. Progeny genome synthesis was first detected during the virus latent period at 2 to 3 h postinfection. Study of the kinetics of viral polypeptide synthesis showed that virus rapidly inhibited cellular polypeptide synthesis such that by 4 h postinfection, only virus-induced polypeptides, 15 of which were detected, were being synthesized. No qualitative changes in the pattern of viral polypeptide synthesis were observed during infection, although, based on kinetic synthesis, three quantitative classes of polypeptides were defined. Pulse-chase analysis revealed three post-translational changes in viral proteins, two of which were shown to be due to glycosylation. Tunicamycin inhibition studies were used to identify the putative non-glycosylated precursors of the two glycoproteins. Comparison of the infected-cell polypeptides with those present in purified virions revealed that mot of the virus-induced proteins were incorporated into virions, with only VP9 being a truly nonstructural protein. Some localization of the various polypeptides within the purified virion was achieved by producing viral cores.  相似文献   

7.
Structural and nonstructural proteins of a rabbit parvovirus   总被引:6,自引:6,他引:0  
The structural and nonstructural polypeptides of a rabbit parvovirus (RPV) (F-7-9 strain) were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The virion contained three polypeptide components, A (molecular weight, 96,000), B (85,000), and C (75,000). A part of the polypeptide C was cleaved into the smaller-molecular-weight polypeptide C' by proteolysis during purification steps. The major polypeptide C together with C' constituted about 87% of the total viral proteins, and the minor polypeptides, A and B, constituted 4 and 9%, respectively. The structural polypeptides of empty particles were similar in size and composition to those of the virion, but the content of the C' polypeptide was very low. When rabbit kidney cell cultures were infected with RPV, the C polypeptide was detected as early as 15 h postinfection, whereas A and B were first demonstrated at 18 h. The C' polypeptide was not detected for 44 h. In addition to the three structural polypeptides, at least three nonstructural polypeptides, E, F, and G, were demonstrated in the RPV-infected cells. Polypeptide E (molecular weight, 49,000), detected mostly in cytoplasm, seemed to be a cellular protein. The F (25,000) and G (22,000) polypeptides seemed to be virus-coded proteins since they were precipitated with the anti-RPV rabbit immunoglobulin. According to partial proteolysis and peptide mapping, the F and G polypeptides shared the same peptide components.  相似文献   

8.
An electrophoretic analysis of radioactively labeled, purified, "empty" and DNA-containing infectious bovine rhinotracheitis virions revealed the presence of 25 to 33 structural (virion) polypeptides. A total of 11 of these polypeptides could be labeled with [3H]glucosamine and were identified as glycoproteins. In addition to the 25 structural polypeptides, infectious bovine rhinotracheitis virus infected cells also contained at least 15 nonstructural (nonvirion) polypeptides that were not present in purified virions. Expression of the viral polypeptides in infected cells was controlled temporally. Thus, most viral polypeptides could be categorized as "alpha" (immediate early), "beta" (early), or "gamma" (late) on the basis of their order of appearance in infected cells and whether their syntheses were dependent upon prior viral protein or DNA synthesis. None of the glycoproteins belongs to the alpha class, although at least one (GVP11) was synthesized in the absence of viral DNA synthesis. Serum from a cow in which infectious bovine rhinotracheitis virus lesions were reactivated by dexamethasone precipitated both structural and nonstructural polypeptides.  相似文献   

9.
10.
11.
Coronavirus JHM: Cell-Free Synthesis of Structural Protein p60   总被引:23,自引:20,他引:3       下载免费PDF全文
Sac(-) cells infected with murine coronavirus strain JHM shut off host cell protein synthesis and synthesized polypeptides with molecular weights of 150,000, 60,000, and 23,000. The 60,000- and 23,000-molecular-weight polypeptides comigrated with virion structural proteins p60 and p23, and the 60,000-molecular-weight protein was identified as p60 by tryptic peptide fingerprinting. Polyadenylate-containing RNA [poly(A) RNA] extracted from the cytoplasm of infected cells directed the synthesis of both 60,000- and 23,000-molecular-weight polypeptides in messenger-dependent cell-free systems derived from mouse L-cells and rabbit reticulocytes. The reticulocyte system also synthesized a 120,000-molecular-weight polypeptide that was specifically immunoprecipitated by antiserum raised against JHM virions. The identity of the 60,000- and 23,000-molecular-weight in vitro products was established by comigration with virion proteins, immunoprecipitation, and in the case of p60, tryptic peptide fingerprinting. The cytoplasmic poly(A) RNAs which encoded p60 and p23 sedimented in sucroseformamide gradients at 17S and 19S, respectively, and were clearly separable. These RNAs were among the major poly(A) RNA species synthesized in the cytoplasm of actinomycin D-treated cells late in infection, and the in vitro translation of size-fractionated RNA released from polysomes confirmed that they represent physiological mRNA's. These results suggest that the expression of the coronavirus JHM genome involves more than one subgenomic mRNA.  相似文献   

12.
Gene protein products of SA11 simian rotavirus genome   总被引:33,自引:18,他引:15  
When MA104 cells were infected with SA11 rotavirus, 12 protein classes, absent in mock-infected cells, could be distinguished by polyacrylamide gel electrophoresis. At least two of these proteins were glycosylated, and their synthesis could be blocked with tunicamycin. The oligosaccharides of both glycoproteins were cleaved by endo-beta-N-acetylglucosaminidase H, suggesting that they were residues of the "high-mannose" type. Of the 12 viral polypeptides observed in infected cells, 1 was probably the apoprotein of one of these glycoproteins; 5, including 1 glycoprotein, were structural components of the virions, whereas the other 6, including a second and possibly third glycoprotein, were nonstructural viral proteins. When the 11 double-stranded RNA genome segments of SA11 were translated, after denaturation, in an RNA-dependent cell-free translation system, at least 11 different polypeptides were synthesized. Ten of these polypeptides had electrophoretic migration patterns equal to those of viral proteins observed in tunicamycin-treated infected cells. Nine of the 11 double-stranded RNA genome segments were resolved by polyacrylamide gel electrophoresis and were translated individually. Two were not resolved from each other and therefore were translated together. Correlation of each synthesized polypeptide with an individual RNA segment allowed us to make a probable gene-coding assignment for the different SA11 genome segments.  相似文献   

13.
Electrophoretic analysis of KB cells coinfected with adenovirus-associated virus (AAV) type 2, a defective parvovirus, and adenovirus type 5 (as helper) have revealed the synthesis in vivo of at least five AAV-specific polypeptides. The three largest polypeptides, with molecular weights of 90,700, 71,600, and 60,000 comigrated in polyacrylamide gels with the three AAV structural polypeptides. The remaining two polypeptides had molecular weights of 24,900 and 15,800. The concentrations of the AAV-induced polypeptides relative to one another remained approximately constant during the infectious cycle, and the structural components were present in proportions similar to those found in purified virions. As determined by pulse-chase experiments, all polypeptides were generated at the level of protein synthesis and not by posttranslational proteolytic processing. Although inhibitors of proteolytic enzymes failed to influence the pattern of AAV-induced polypeptides, and amino acid analog, L-canavanine, blocked the appearances of both the major structural polypeptide (60,000 daltons) and the larger nonstructural polypeptide (24,900 daltons). Taken in conjunction with pulse-chase data, this result supports a model whereby the major virion polypeptide is produced by proteolytic cleavage of the nascent polypeptide chain.  相似文献   

14.
我们从腹泻病人便样中纯化了病毒,其结构蛋白组分按分子量大小分别为VP1(136K),VP2(113K),VP3(92K),VP4(84K),VP5(64K),VP6(47K),VP7(41K)。所有这些蛋白皆具有抗原性。WP6是B组轮状病毒的共同抗原。B组轮状病毒的每一结构蛋白与A组轮状病毒都无交叉免疫反应。另外注意到二例不同病人对VP6和VP7刺激产生的抗体水平不同。  相似文献   

15.
Polypeptide Synthesis in Simian Virus 5-Infected Cells   总被引:11,自引:6,他引:5       下载免费PDF全文
Polypeptide synthesis in three different cell types infected with simian virus 5 has been examined using high-resolution polyacrylamide slab gel electrophoresis, and all of the known viral polypeptides have been identified above the host cell background. The polypeptides were synthesized in infected cells in unequal proportions, which are approximately the same as they are found in virions, suggesting that their relative rates of synthesis are controlled. The nucleocapsid polypeptide (NP) was the first to be detected in infected cells, and by 12 to 14 h the other virion structural polypeptides were identified, except for the polypeptides comprising the smaller glycoprotein (F). However, a glycosylated precursor (F(0)) with a molecular weight of 66,000 was found in each cell type, and pulse-chase experiments suggested that this precursor was cleaved to yield polypeptides F(1) and F(2). No other proteolytic processing was found. In addition to the structural polypeptides, the synthesis of five other polypeptides, designated I through V, has been observed in simian virus 5-infected cells. One of these (V), with a molecular weight of 24,000, was found in all cells examined and may be a nonstructural viral polypeptide. In contrast, there are polypeptides present in uninfected cells that correspond in size to polypeptides I through IV, and similar polypeptides have also been detected in increased amounts in cells infected with Sendai virus. These findings, and the fact that the synthesis of all four of these polypeptides is not increased in every cell type, suggest that they represent host polypeptides whose synthesis may be enhanced upon infection. When a high salt concentration was used to decrease host cell protein synthesis in infected cells, polypeptides IV and (to a lesser extent) I were synthesized in relatively greater amounts than other cellular polypeptides, as were the viral polypeptides. The possibility that these polypeptides may play some role in virus replication is discussed.  相似文献   

16.
Hyperimmune antisera to purified Sindbis (SIN) or Semliki Forest (SF) virus were used to identify alphavirus-specific and cross-reactive proteins in virions and infected cells. The hyperimmune sera participated in homologous and cross-cytolysis of alphavirus-infected cells, and the use of monospecific antisera to SIN structural proteins suggested that E1 and E2 could serve as target proteins in cytolysis. Proteins from purified virions or infected cells were extracted with Nonidet P-40, denatured by procedures for sodium dodecyl sulfate-polyacrylamide gel electrophoresis, transferred to nitrocellulose solid supports, and reacted with hyperimmune sera and 125I-labeled protein A (immunoblotting on denatured proteins). Alternatively, native proteins extracted by mild Nonidet P-40 treatment were precipitated with hyperimmune sera before denaturation by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. After immunoblotting, homologous antiserum reacted with the virus structural proteins E1, E2, capsid extracted from purified virions, and the counterparts of these proteins extracted from infected cells. In addition, PE2 and a 92,000-molecular-weight protein from infected cells reacted with homologous antiserum. These proteins were also immunoprecipitated with homologous antiserum. After immunoblotting, the Sindbis capsid protein was shown to be cross-reactive whether derived from purified virions or from infected cells; no cross-reactivity was observed with PE2 or E2 from either source, and the E1 glycoprotein was shown to be cross-reactive only when obtained from virions. However, the E1 glycoprotein could be cross-immunoprecipitated from infected cells (as well as from disrupted virions), and, in addition, capsid and a 92,000-molecular-weight protein were cross-immunoprecipitated from infected cells. These results suggest that a native conformation of the cell-associated E1 glycoproteins may be required for immunological cross-reactivity (immune precipitation), whereas virion but not cell-associated E1 retains immunological cross-reactivity after denaturation (immunoblot technique). The findings extend our previously published evidence which suggested that alphavirus maturation is accompanied by a change in immunological cross-reactivity with respect to E1.  相似文献   

17.
Sera from porcine parvovirus (PPV)-infected swine fetuses immunoprecipitated and 84- to 86-kilodalton polypeptide in addition to the A and B virion structural proteins. This polypeptide, designated NS-1, was present in PPV-infected cell lysates but not in purified virions. Partial proteolysis mapping revealed that NS-1 was not related to the A and B viral structural proteins. All three proteins in infected cells were phosphorylated at serine residues, and NS-1 also contained phosphothreonine. From pulse-labeling experiments with either 32Pi or [35S]methionine, NS-1 was found to first appear 5 to 7 h postinfection, whereas the viral structural polypeptides were first synthesized 9 to 11 h postinfection. Pulse-chase experiments revealed that NS-1 initially appeared as an 84-kilodalton protein and was subsequently structurally modified to forms of slower electrophoretic mobilities. The time of appearance of NS-1 after virus infection coincided with the initiation of viral DNA synthesis, suggesting that this polypeptide (and the modified forms thereof) may be involved in PPV replication.  相似文献   

18.
The mRNA species encoded by early region 4 (E4) (map position [mp] 91.5 to 99.3) of adenovirus 2 were isolated from the polysomes of infected KB cells and were purified by hybridization to the cloned HindIII-F fragment (mp 89.5 to 97.3) or to EcoRI-C fragment (mp 89.7 to 100). The mRNA's were translated in vitro using [35S]methionine as a labeled precursor in rabbit reticulocyte lysates treated with micrococcal nuclease as well as in wheat germ lysates. Five major (35,000-molecular-weight [35K], 23K, 22K, 21K, 18K) polypeptides were observed when the reticulocyte lysate was used. The 23K, 22K, 21K, and 18K polypeptides were also observed with the wheat germ lysate, as well as a very prominent 11K polypeptide; the 35K polypeptide was not observed. Assignment of these polypeptides to E4 was further established by hybrid arrested translation. Two-dimensional gel electrophoresis of a wheat germ translate resolved five polypeptides ranging from 18K to 23K, the major 11K polypeptide, and polypeptides of 10K and 9K. The in vitro 23K to 18K and 11K polypeptides migrated to approximately the same positions on two-dimensional gels as did seven 26K to 21K polypeptides and an 11K polypeptide synthesized in vivo (Brackmann et al., J. Biol. Chem, 255:6772--6779, 1980). Two-dimensional tryptic peptide maps demonstrated that the 35K, 23K, 22K, 21K, and 18K polypeptides are related. The peptide map of 11K is different from those of the above polypeptides, although 11K may share one tryptic methionine polypeptide with them. These results indicate that E4 encodes a major 11K polypeptide, as well as major 35K, 23K, 22K, 21K, and 18K polypeptides.  相似文献   

19.
The published data on the characteristics and properties of structural and nonstructural polypeptides of the African porcine virus are reviewed. Localization of the viral proteins in virions and infected cells, kinetics of biosynthesis, glycosylation, phosphorylation and the antigenicity of the proteins are discussed.  相似文献   

20.
Antisera to disrupted Rauscher leukemia virus (RLV) or to the purified Rauscher viral 30,000 dalton polypeptide were used to specifically precipitate newly synthesized intracellular viral polypeptides from extracts of infected NIH Swiss mouse cells (JLS-V16). Analysis by SDS-polyacrylamide gel electrophoresis (SDS-PAGE) of extracts from cells pulse-labeled for 10–20 min with 35S-methionine showed that immune precipitates contained none of the nonglycosylated internal structural polypeptides of mature viruses. The major viral-specific polypeptides labeled in 10 min included polypeptides of 180,000, 140,000, 110,000, 80,000, and 60,000 daltons with minor polypeptides of 65,000, 50,000, and 40,000 daltons. Labeling the intracellular virus-specific polypeptides with 14C-glucosamine indicated that the 180,000, 110,000, 80,000, and 60,000 dalton polypeptides were glycosylated, and all but the 110,000 dalton polypeptides are contained in the mature virions. Based on pulse-chase experiments, it appears that at least 3 of the large polypeptides (140,000, 65,000, and 50,000 daltons) are precursors to the three major internal structural polypeptides of the mature virions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号