首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The Aspergillus nidulans gene xlnA coding for the fungal xylanase X22 has been cloned and expressed in two heterologous bacterial hosts: Streptomyces lividans and Brevibacterium lactofermentum. Streptomyces strains yielded 10 units/ml of xylanase when the protein was produced with its own signal peptide, and 19 units/ml when its signal peptide was replaced by the one for xylanase Xys1 from Streptomyces halstedii. B. lactofermentum was also able to produce xylanase X22, affording 6 units/ml upon using either the Aspergillus xlnA signal peptide or Streptomyces xysA. These production values are higher than those previously reported for the heterologous expression of the A. nidulans xlnA gene in Saccharomyces cerevisiae (1 unit/ml). Moreover, the X22 enzyme produced by Streptomyces lividans showed oenological properties, indicating that this Streptomyces recombinant strain is a good candidate for the production of this enzyme at the industrial scale.  相似文献   

3.
4.
5.
6.
7.
The roles of XlnR and AnRP in regulating the expression of the xylanase gene, cgxA, from Chaetomium gracile were investigated using Aspergillus nidulansas an intermediate host. The XlnR consensus binding sequence –GGCTAA– in the promoter region was functional in vivo. The cgxA gene was induced when xylan was used as a carbon source but this inducibility was abolished when the XlnR binding sequence was mutated. Furthermore, the induction by xylan was increased when the AnRP binding sequence –TTGACAAAT– was mutated. Electrophoretic mobility shift assays using partially purified AnRP and an Aspergillus oryzae XlnR fusion protein, MalE-AoXlnR, provided evidence that the binding of the two proteins to their respective sites in the cgxA promoter region was mutually exclusive.  相似文献   

8.
9.
10.
Aspergillus niger IFO 4066 produced two xylanases, xylanase A (XynNA) and xylanase B (XynNB), in culture medium, and these enzymes were purified. Acidophilic xylanase such as xylanase C (XynC) of white koji mold (Aspergillus kawachii IFO 4308) was not detected in A. niger cultures. However, results of Southern analysis using xynC cDNA of A. kawachii as a probe suggested that A. niger contained a gene homologous to xynC of A. kawachii. Therefore, we cloned this xylanase gene from A. niger. The predicted amino acid sequence of the cloned xylanase showed a homology to that of xynC of A. kawachii. However, a large number of amino acid substitutions were detected, especially in the N-terminal region. Both this cloned gene and xynC gene of A. kawachii had an intron at the same position in the coding region. The cloned gene was expressed in A. kawachii and a large quantity of xylanase was produced. The elution profile on an anion exchange chromatogram and the N-terminal amino acid sequence of the xylanase purified from the transformant were the same as those of XynNB. This confirmed that the cloned gene encoded XynNB.  相似文献   

11.
12.
13.
Ten strains of Thermomyces lanuginosus from various culture collections were evaluated for extracellular endo‐β‐1,4‐xylanase production. The best xylanase producer (5771±173 nkat/mL) T. lanuginosus SK, was subjected to UV and N‐methyl‐N‐nitro‐N‐nitrosoguanidine mutagenesis. A mutant strain T. lanuginosus MC134, that showed on oatspelts xylan a 1.5 fold higher xylanase production than the parent strain SK, was subjected to a study of the regulation of xylanase synthesis during growth on various carbohydrates and during induction in glucose‐grown cells. In the growth experiments the highest production of xylanase was observed in the presence of xylans, however, an appreciable amount of the enzyme, about 10%, was also produced during growth on xylose. Xylobiose was found to be the most efficient xylanase inducer in the glucose‐grown cells. Its induction efficiency was followed by xylose, beechwood and birchwood xylan. Xylanase induction by polysaccharides started several hours later but proceeded for a longer time than that induced by the low molecular mass inducers, indicating that the polysaccharides serve as more sustainable source of inducers and that they have to be first hydrolyzed by the low level of constitutively synthesized xylanase. The repression of the induction of xylanase by glucose confirmed that the xylanase synthesis in the mutant strain is similar to the parent strain and exhibits an induction‐repression regulation mechanism.  相似文献   

14.
Carbon catabolite repression of the Aspergillus nidulans xlnA gene   总被引:2,自引:0,他引:2  
Expression of the Aspergillus nidulans 22 kDa endoxylanase gene, xlnA , is controlled by at least three mechanisms: specific induction by xylan or xylose; carbon catabolite repression (CCR); and regulation by ambient pH. Deletion analysis of xlnA upstream sequences has identified two positively acting regions: one that mediates specific induction by xylose; and another that mediates the influence of ambient pH and contains two PacC consensus binding sites. The extreme derepressed mutation creAd 30 results in considerable, although not total, loss of xlnA glucose repressibility, indicating a major role for CreA in its CCR. Three consensus CreA binding sites are present upstream of the structural gene. Point mutational analysis using reporter constructs has identified a single site, xlnA .C1, that is responsible for direct CreA repression in vivo . Using the creAd 30 derepressed mutant background, our results indicate the existence of indirect repression by CreA.  相似文献   

15.
16.
The complete gene xylA that encodes endo-1,4--xylanase secreted byPenicillium canescens was cloned and sequenced. The coding region of the gene is separated by eight introns. The protein comprises 302 amino acids of the mature protein and 25 amino acids of the signal peptide. The xylanase of P. canescens belongs to the glycosyl hydrolase family 10. Nucleotide sequences for binding catabolite repression protein CREA and transactivator protein were detected in the promoter region. A set of multicopy strains displaying a seven to eightfold increase in xylanase yield was obtained. The fraction of xylanase in most productive strains amounted to 30–50% of the total secreted protein.  相似文献   

17.
18.
19.
Xylanase inhibitor TAXI-I gene was cloned from wheat (Triticum aestivum L.) and then TAXI-I encoding sequence was expressed in Escherichia coli. The recombinant TAXI-I protein inhibited glycoside hydrolase (GH) family 11 xylanases in Aspergillus niger (Anx; a fungal xylanase), and Thermomonospora fusca (Tfx; a bacterial xylanase), and also inhibited hybrid xylanases Atx (a hybrid xylanase whose parents are T. fusca and A. niger) and Btx (a hybrid xylanase whose parents are T. fusca and Bacillus subtilis). Among the tested xylanases, A. niger xylanase was the most inhibited one by wheat xylanase inhibitor TAXI-I, while T. fusca xylanase was the least inhibited one. The profile of TAXI-I gene expression in wheat in response to phytohormones was also investigated. TAXI-I gene expression was drastically induced by methyl jasmonate (MeJa), and hardly detected in gibberellic acid (GA) treatment. Therefore, TAXI-I might be involved in plant defense against fungal and bacteria xylanases.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号