首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 70 毫秒
1.
The localization of parvalbumin in fish white muscle and of the calcium binding protein, of arginine kinase and of glycogen phosphorylase in crayfish tail muscle have been investigated by immunofluorescence using isolated myofibrils and muscle sections as starting materials. It is shown that the four proteins appear to be localized on the thin filaments when myofibrils are used as starting material. This result contrasts with previous observations where it appeared that parvalbumin in fish muscle and arginine kinase in crayfish muscle were distributed uniformly within the cell. This discrepancy is discussed in relation to the high solubility of these proteins. In the light of the present knowledge about striated muscles from these two organisms, it seems that the roles of parvalbumin in fish and of the calcium binding protein in crayfish are probably different.  相似文献   

2.
Specific antibodies against carp paravalbumin, crayfish calcium binding protein and crayfish arginine kinase were used for indirect immunofluorescence localization of the respective proteins. Simultaneous staining of the same muscle sections with human serum containing anti-actin autoantibodies served as a probe to identify the isotropic band. Parvalbumin appears to be evenly distributed in carp white muscle. The crayfish calcium binding protein however shows a distinct localization, in the isotropic band, coincident with the actin staining. Arginine kinase, which has the same molecular weight and is extractible in the same way as the calcium binding protein does not show this distinct localization, but is evenly present in crayfish tail muscle, similarly to parvalbumin. The possible meaning of the different distribution of the two calcium binding proteins is discussed.  相似文献   

3.
Summary Specific antibodies against carp paravalbumin, crayfish calcium binding protein and crayfish arginine kinase were used for indirect immunofluorescence localization of the respective proteins. Simultaneous staining of the same muscle sections with human serum containing anti-actin autoantibodies served as a probe to identify the isotropic band.Parvalbumin appears to be evenly distributed in carp white muscle. The crayfish calcium binding protein however shows a distinct localization, in the isotropic band, coincident with the actin staining. Arginine kinase, which has the same molecular weight and is extractible in the same way as the calcium binding protein, does not show this distinct localization, but is evenly present in crayfish tail muscle, similarly to parvalbumin.The possible meaning of the different distribution of the two calcium binding proteins is discussed.A preliminary report on this work was presented at the meeting of the Union of Swiss Societies for experimental Biology, Lausanne, 1975. This work was supported by the Swiss National Science Foundation, grants No. 3.725.72 and 3.0330.73  相似文献   

4.
Procedures for a rapid isolation and purification of parvalbumin (Mr = 12,600), parvalbumin-like protein (Mr = 12,800), and three other polypeptides with molecular weights of 12,400 (Component 1), 11,700 (Component 2), and 8,000, respectively, from chicken leg muscle, are described. A direct comparison of parvalbumin with these other proteins showed distinct differences in the amino acid compositions, charge, and immunological behavior. Parvalbumin has two high affinity sites for Ca2+ with a KDiss less than or equal to 10(-6) M (Blum, H. E., Lehky, P., Kohler, L., Stein, E.A., and Fischer, E. H. (1977) J. Biol. Chem. 252, 2834-2838), in contrast to parvalbumin-like protein. Components 1 and 2, and the Mr = 8,000 protein, where only low affinity sites for Ca2+ could be detected (KDiss greater than 10(-3) M). From our results it is concluded that the co-extracted proteins do not constitute isoproteins of parvalbumin. The very low affinity for Ca2+ suggests that these proteins are not involved in processes of Ca2+ transport or Ca2+ regulation as proposed for parvalbumin. Parvalbumin could not be localized within isolated myofibrils and also did not accumulate in primary myogenic cell cultures together with proteins forming the myofibrillar structure. Parvalbumin was not even detected in myotubes in which myofibrils and sarcoplasmatic reticulum were already assembled and functioning. Parvalbumin (or cross-reacting material) was detected in leg muscle and brain 1 day after hatching of the chick. Possible roles for parvalbumin are discussed.  相似文献   

5.
The highly stable Ca2+ binding protein, parvalbumin, is prevalent in fish white muscle tissue. The properties of this protein make it a promising antigen for use as a specific biomarker for fish identification. Parvalbumin was purified from white muscle of an adult common snook Centropomus undecimalis using ammonium sulfate precipitation, size-exclusion chromatography (SEC) and anion-exchange HPLC. Parvalbumins were characterized by the presence of an 11-kDa band following gradient-SDS gel electrophoresis and by their immunoreactivity against mouse anti-parvalbumin antibodies. Anion-exchange chromatography of the parvalbumin fraction separated from the SEC column yielded nine fractions. Subsequent analysis of these fractions by isoelectric focusing gel electrophoresis led to a total of seven parvalbumin isotypes, which may lend themselves as biomarkers in fish identification. The presence of these seven parvalbumin isotypes was confirmed independently by reversed-phase HPLC. A dilution endpoint immunoassay was developed for C. undecimalis parvalbumin using a monoclonal antibody directed against its highly conserved calcium binding site. The utility of parvalbumin isotype distribution and specific monoclonal antibodies against fish parvalbumin in species identification is discussed.  相似文献   

6.
Sarcoplasmic calcium binding protein (SCP) is an invertebrate EF-hand calcium buffering protein that has been proposed to fulfill a similar function in muscle relaxation as vertebrate parvalbumin. We have identified three SCP variants in the freshwater crayfish Procambarus clarkii. The variants (pcSCP1a, pcSCP1b, and pcSCP1c) differ across a 37 amino acid region that lies mainly between the second and third EF-hand calcium binding domains. We evaluated tissue distribution and response of the variants to cold exposure, a stress known to affect expression of parvalbumin. Expression patterns of the variants were not different and therefore do not provide a functional rationale for the polymorphism of pcSCP1. Compared to hepatopancreas, expression of pcSCP1 variants was 100,000-fold greater in axial abdominal muscle and 10-fold greater in cardiac muscle. Expression was 10-100 greater in fast-twitch deep flexor and extensor muscles compared to slow-twitch superficial flexor and extensors. In axial muscle, no significant changes of pcSCP1, calmodulin (CaM), or sarcoplasmic/endoplasmic reticulum Ca-ATPase (SERCA) expression were measured after one week of 4°C exposure. In contrast, large decreases of pcSCP1 were measured in cardiac muscle, with no changes in CaM or SERCA. Knockdown of pcSCP1 by dsRNA led to reduced muscle activity and decreased expression of SERCA. In summary, the pattern of pcSCP1 tissue expression is similar to parvalbumin, supporting a role in muscle contraction. However, the response of pcSCP1 to cold exposure differs from parvalbumin, suggesting possible functional divergence between the two proteins.  相似文献   

7.
To develop reporter systems to study the regulation of protein degradation in innervated muscle, we have used strains of the nematode Caenorhabditis elegans containing transgenes that fuse lacZ or green fluorescent protein (GFP) coding regions to muscle-specific promoter/enhancer regions, such that the fusion proteins are expressed exclusively in body-wall and vulval muscle cells. The starvation-induced degradation of the beta-galactosidase reporter protein is quantitatively similar to that of two endogenous muscle proteins, arginine kinase and adenylate kinase. A soluble GFP in the muscle cytosol is degraded during starvation, but when GFP is fused to a full-length myosin heavy chain and incorporated into myofibrils, it is resistant to starvation-induced degradation. This suggests that under some conditions soluble muscle proteins may be extensively catabolized in preference to the proteins of the contractile fibers.  相似文献   

8.
Characterization of DHP binding protein in crayfish striated muscle   总被引:1,自引:0,他引:1  
The dihydropyridine calcium channel blocker, [3H]PN 200-110, binds specifically also to crayfish muscle membranes, though with a binding capacity smaller than that measured with rabbit or human skeletal muscle membranes. [3H]PN 200-110 binding proteins from the crayfish T-tubules were solubilized and purified on WGA Sepharose or extracted from gel. The purified protein has a molecular mass of approximately 190 kDa under nonreducing conditions and was able to transport calcium after reconstitution. Polyclonal antibodies against crayfish T-tubules enriched with purified DHP-binding protein were shown to bind to DHP-binding protein from both the crayfish and the rabbit skeletal muscle, although not with the same intensity. Electron microscopy showed the presence of ovoid particles. Our results suggest that a voltage-dependent calcium channel may be present in crayfish skeletal muscle, which is homological with the L-type calcium channel in rabbit skeletal muscle.  相似文献   

9.
Several polyacrylamide gel electrophoresis techniques were used to study developmental changes in myofibrillar protein composition and parvalbumin distribution in the myotomal muscle of Brycon moorei . Two myosin LC2 chains and two troponin I isoforms were successively detected. Up to four troponin T isoforms were synthesized. Slow red-muscle myofibrils from adult fish showed no common component (except actin) with larval, juvenile or adult fast white-muscle myofibrils. During growth of B. moorei , two classes of parvalbumin isoforms were sequentially expressed: larval PA I, PA IIa, and PA IIb and adult PA III. In adult fish, the content in Tn T-2 isoform decreased from the anterior to the posterior myomeres, in favour of Tn T-1 and Tn T-4. The parvalbumin content also diminished from the rostral to the caudal muscle. The fast rate of transition from larval to adult isoforms appeared to parallel the extremely fast growth of B. moorei . Sequential expression of these isoforms presumably reflected variations in the contractile properties of the muscle fibres, required by changes in physiological demands of the propulsive musculature.  相似文献   

10.
This study examines the role of a myoplasmic protein, parvalbumin, in enhancing muscle relaxation by fishes. Parvalbumin is thought to bind free Ca2+ during muscle contraction, thereby reducing intracellular [Ca2+] in muscle and speeding muscle relaxation by reducing Ca2+ availability to the troponin complex. We hypothesized that parvalbumin expression is ubiquitously expressed in fish muscle and that its expression levels and role in muscle relaxation would depend on the activity level and the thermal environment of a given fish species. Muscle contractile properties and patterns of parvalbumin expression were examined in pinfish (Lagodon rhomboides) and two species of toadfish (gulf toadfish, Opsanus beta, and oyster toadfish, Opsanus tau). Unlike another sparid (sheepshead), the active swimming pinfish does not express parvalbumin in its slow-twitch red muscle. However, both sheepshead and pinfish have relatively high levels of parvalbumin in their myotomal white muscle. Gulf toadfish from the Gulf of Mexico expressed higher levels of parvalbumin and had faster muscle relaxation rates than oyster toadfish from more northern latitudes. The faster muscle of gulf toadfish also expressed relatively more of one parvalbumin isoform, suggesting differences in the binding properties of the two isoforms observed in toadfish swimming muscle. Parvalbumin expression and its role in muscle relaxation appear to vary widely in fishes. There are many control points involved in the calcium transient of contracting muscle, leading to a variety of species-specific solutions to the modulation of muscle relaxation.  相似文献   

11.
A new technique for obtaining a myofibril-like preparation from vertebrate smooth muscle has been developed. An actomyosin can be readily extracted from these myofibrils at low ionic strength and in yields 20 times as high as previously reported. The protein composition of all preparations has been monitored using dodecylsulfate-gel electrophoresis. By this method smooth muscle actomyosin showed primarily only the major proteins, myosin, actin and tropomyosin, while the myofibrils contained, additionally, three new proteins not previously described with polypeptide chain weights of 60000, 110000 and 130000. The ATPase activities of both the myofibrils and actomyosin preparations are considerably higher than previously described for vertebrate smooth muscle. They are sensitive to micromolar Ca2+ ion concentrations to the same degree as comparable skeletal and cardiac muscle preparations, even though troponin-like proteins could not be identified in these smooth muscle preparations. From the latter observation and the presence of Ca2+-sensitivity in tropomyosin-free actomyosin it is suggested that this calcium sensitivity is, as in some invertebrate muscles, a property of the myosin molecule.  相似文献   

12.
The homologous sequences observed for many calcium binding proteins such as parvalbumin, troponin C, the myosin light chains, and calmodulin has lead to the hypothesis that these proteins have homologous structures at the level of their calcium binding sites. This paper discusses the development of a nuclear magnetic resonance (NMR) technique which will enable us to test this structural hypothesis in solution. The technique involves the substitution of a paramagnetic lanthanide ion for the calcium ion which results in lanthanide induced shifts and broadening in the 1H NMR spectrum of the protein. These shifts are sensitive monitors of the precise geometrical orientation of each proton nucleus relative to the metal. The values of several parameters in the equation relating the NMR shifts to the structure are however known as priori. We have attempted to determine these parameters, the orientation and principal elements of the magnetic susceptibility tensor of the protein bound metal, by studying the lanthanide induced shifts for the protein parvalbumin whose structure has been determined by x-ray crystallographic techniques. The interaction of the lanthanide ytterbium with parvalbumin results in high resolution NMR spectra exhibiting a series of resonances with shifts spread over the range 32 to -19 ppm. The orientation and principal elements of the ytterbium magnetic susceptibility tensor have been determined using three assigned NMR resonances, the His-26 C2 and C4 protons and the amino terminal acetyl protons, and seven methyl groups; all with known geometry relative to the EF calcium binding site. The elucidation of these parameters has allowed us to compare the observed spectrum of the nuclei surrounding the EF calcium binding site of parvalbumin with that calculated from the x-ray structure. A significant number of the calculated shifts are larger than any of the observed shifts. We feel that a refinement of the x-ray based proton coordinates will be possible utilizing the geometric information contained in the lanthanide shifted NMR spectrum.  相似文献   

13.
This review aims at giving a rational frame to understand the diversity of EF hand containing calcium binding proteins and their roles, with special focus on three members of this huge protein family, namely calmodulin, troponin C and parvalbumin. We propose that these proteins are members of structured macromolecular complexes, termed calcisomes, which constitute building devices allowing treatment of information within eukaryotic cells and namely calcium signals encoding and decoding, as well as control of cytosolic calcium levels in resting cells.Calmodulin is ubiquitous, present in all eukaryotic cells, and pleiotropic. This may be explained by its prominent role in regulating calcium movement in and out of the cell, thus maintaining calcium homeostasis which is fundamental for cell survival. The protein is further involved in decoding transient calcium signals associated with calcium movements after cell stimulation. We will show that the specificity of calmodulin's actions may be more easily explained if one considers its role in the light of calcisomes.Parvalbumin should not be considered as a simple intracellular calcium buffer. It is also a key factor for regulating calcium homeostasis in specific cells that need a rapid retrocontrol of calcium transients, such as fast muscle fibers.Finally, we propose that troponin C, with its four calcium binding domains distributed between two lobes presenting different calcium binding kinetics, exhibits all the characteristics needed to trigger and then post modulate muscle contraction and thus appears as a typical Feed Forward Loop system.If the present conjectures prove accurate, the way will be paved for a new pharmacology targeting the cell calcium signaling machinery.This article is part of a Special Issue entitled: ECS Meeting edited by Claus Heizmann, Joachim Krebs and Jacques Haiech.  相似文献   

14.
To identify muscle-related protein isoforms expressed in the white muscle of the mandarin fish Siniperca chuatsi, we analyzed 5,063 high-quality expressed sequence tags (ESTs) from white muscle cDNA library and predicted the integrity of the clusters annotated to these genes and the physiochemical properties of the putative polypeptides with full length. Up to about 33% of total ESTs were annotated to muscle-related proteins: myosin, actin, tropomyosin/troponin complex, parvalbumin, and Sarcoplasmic/endoplasmic reticulum calcium ATPase (SERCa). Thirty-two isoforms were identified and more than one isoform existed in each of these proteins. Among these isoforms, 14 putative polypeptides were with full length. In addition, about 2% of total ESTs were significantly homologous to “glue” molecules such as alpha-actinins, myosin-binding proteins, myomesin, tropomodulin, cofilin, profilin, twinfilins, coronin-1, and nebulin, which were required for the integrity and maintenance of the muscle sarcomere. The results demonstrated that multiple isoforms of major muscle-related proteins were expressed in S. chuatsi white muscle. The analysis on these isoforms and other proteins sequences will greatly aid our systematic understanding of the high flexibility of mandarin fish white muscle at molecular level and expand the utility of fish systems as models for the muscle genetic control and function.  相似文献   

15.
The amino acid sequence for vitamin D-dependent bovine intestinal calcium binding protein has been established. It contains 85 amino acids in a single chain and lacks cysteine, tryptophan, methionine, histidine, and arginine. The NH2-terminal lysine is blocked by an N-acetyl group. Enzymatic digestion with trypsin, chymotrypsin, and pepsin yielded a number of peptides which were purified by two-dimensional high voltage paper electrophoresis. These peptides were examined by end group analysis and sequenced by the dansyl procedure. The absence of tryptophan permitted by a single cleavage of the molecule by N-bromosuccinimide at the tyrosine residue at position 8 and the larger fragment was subjected to automated Edman degradation. By these means, the following sequence was established: N-Ac-Lys-Gln-Ser-Pro-Leu-Glu-Tyr-Ala-Ala-Glu-Lys-Ser-Ile-Gln-Lys-Glu-Ile-Glu-Lys-Gly-Phe-Phe-Lys-Gln-Leu-Leu-Val-Ser-Val-Gln-Lys-Ala-Gly-Asp-Lys-Glu-Ser-Leu-Gln-Pro-Leu-Phe-Thr-Leu-Leu-Lys-Ser-Gly-Pro-Glu-Glu-Asn-Leu-Lys-Glu-Ser-Gln-Asn-Gly-Pro-Asp-Leu-Ls7-Ser-Gly-Pro-Gly-Asn-Asp-Leu-Glu-Glu-Lys-Gly-Thr-Asp-Val-Phe-Ser-Leu-Lys-Gln. Microheterogeneity may exist in the molecule at residue 76 in which position threonine may be replaced by serine. Comparison of the sequence of calcium-binding protein to the "test" sequence of Tufty and Kretsinger ((1975) Science 187, 167-169) proposed to identify E-F hands in muscle proteins suggests that intestinal calcium-binding protein may likewise contain one or possibly two E-F hands which could account for calcium-binding property. Dayhoff alignment scores, however, calculated for calcium-binding protein against nine E-F hands in muscle proteins parvalbumin, troponin and alkali light chains do not indicate that intestinal calcium-binding protein is homologous to these muscle protein chains.  相似文献   

16.
Calcium dissociation constants (KD) were measured as a function of temperature for parvalbumin, a small acidic protein expressed abundantly in fast-twitch muscle, from the Arctic cod (Boreogadus saida) and compared to values previously determined for Antarctic and temperate zone teleosts. Estimates of KD were derived independently from fluorometric titrations and calorimetry. In addition, the primary structure of B. saida parvalbumin was determined. Calcium KDs for parvalbumin from B. saida were fundamentally similar to those for parvalbumins from Antarctic species (6.68+/-0.59 nM and 7.77+/-0.72 nM at 5 degrees C, respectively), but significantly different from temperate zone species (1.35+/-0.28 nM at 5 degrees C). However, estimates of KD for B. saida parvalbumin at 5 degrees C closely matched values for temperate zone fish at 25 degrees C (6.54+/-0.56 nM), recapitulating the prior observation that calcium affinity of parvalbumin is conserved at the native temperature of teleost fish. Full sequence of B. saida parvalbumin was generated using reverse-phase HPLC and RACE-PCR. The Arctic parvalbumin showed 83% homology to a carp parvalbumin. None of the 16 total substitutions between the two parvalbumins resided in the cation binding sites of the protein, indicating that the structural locus of the thermal sensitivity of function lies outside the active regions.  相似文献   

17.
N Coruh  J P Riehl 《Biochemistry》1992,31(34):7970-7976
A number of different experimental techniques have been used to probe the details of structural changes on the binding of Ca(II) to the large number of known calcium-binding proteins. The use of luminescent lanthanide(III) ions, especially terbium(III) and europium(III), as substitutional replacement for calcium(II), has led to a number of useful experiments from which important details concerning the metal ion coordination sites have been obtained. This work is concerned with the measurement of the circularly polarized luminescence (CPL) from the 5D4----7F5 transition of Tb(III) bound to the calcium binding sites of bovine trypsin, bovine brain calmodulin, and frog muscle parvalbumin. It is demonstrated that it is possible to make these polarization measurements from very dilute solutions (less than 20 microM) and monitor structural changes as equivalents of Tb(III) are added. It is shown that the two proteins that belong to the class of "EF-hand" structures (calmodulin and parvalbumin) possess quite similar CPL line shapes, whereas Tb(III) bound to trypsin has a much different band structure. CPL results following competitive and consecutive binding of Ca(II) and Tb(III) bound to calmodulin are also reported and yield information concerning known differences between the sequence of binding of these two species.  相似文献   

18.
Parvalbumins are high-affinity Ca(2+)-binding proteins characterized by an EF-hand structure. Muscles of lower vertebrates contain up to five isoparvalbumins whereas higher vertebrates were believed to contain only one isoform per species. Recently Brewer et al. [Brewer, J.M., Wunderlich, J.K., & Ragland, W. (1990) Biochimie 72, 653-660] purified and sequenced a protein that they named avian thymic hormone, from chicken thymus. This protein, promoting immunological maturation of bone marrow cells in culture, was identified as a parvalbumin. The amino acid composition of this thymic parvalbumin was, however, considerably different from those of chicken muscle parvalbumin [Strehler, E.E., Eppenberger, H.M., & Heizman, C.W. (1977) FEBS Lett. 75, 127-133], suggesting the existence of two tissue-specific parvalbumins in chicken. We purified parvalbumin from chicken muscle, determined its complete amino acid sequence by tandem mass spectrometry, and showed that this protein is rather homologous to muscle parvalbumins from other species but different in 45 positions from the thymic parvalbumin. We discuss the possibility that a parvalbumin gene family might exist in higher vertebrates, expressed in a tissue-specific and developmentally regulated manner.  相似文献   

19.
Although it has been believed for several years that calcium ions are the means by which glycogenolysis and muscle contraction are synchronized, it is only over the past three years that this concept has started to be placed on a firm molecular basis. It appears that the regulation of phosphorylase kinase in vivo is achieved through the interaction of the enzyme with the two calcium binding proteins, calmodulin and troponin-C, and that the relative importance of these proteins depends on the degree of phosphorylation of the enzyme (figure 3). In the dephosphorylated form of the enzyme, troponin-C rather than calmodulin is the dominant calcium dependent regulator providing an attractive mechanism for coupling glycogenolysis and muscle contraction, since the same calcium binding protein activates both processes. On the other hand, the phosphorylated form of the enzyme can hardly be activated at all by troponin-C, although it is still completely dependent on calcium ions. Calmodulin (the δ - subunit) is therefore the dominant calcium dependent regulator of phosphorylase kinase in its hormonally activated state.
Recent work has demonstrated that phosphorylase kinase not only activates phosphorylase, but also phosphorylates glycogen synthase thereby decreasing its activity (45–49). The regulation of phosphorylase kinase by calcium ions may therefore also provide a mechanism for co-ordinating the rates of glycogenolysis and glycogen synthesis during muscle contraction.  相似文献   

20.
The helix-loop-helix (i.e., EF-hand) Ca(2+) ion binding motif is characteristic of a large family of high-affinity calcium ion binding proteins, including the parvalbumins, oncomodulins and calmodulins. In this work we describe a set of molecular dynamics computations on the major parvalbumin from the silver hake (SHPV-B) and on functional fragments of this protein, consisting of the first four helical regions (the ABCD fragment), and the internal helix-loop- helix region (the CD fragment). In both whole protein and protein fragments (i.e., ABCD and CD fragments), the 9th loop residue in the calcium ion binding site in the CD helix-loop-helix region (the so-called "gateway" position) has been mutated from glutamic acid to aspartic acid. Aspartic acid is one of the most common residues found at the gateway position in other (non-parvalbumin) EF- hand proteins, but has never been found at the gateway position of any parvalbumin. (Interestingly, aspartic acid does occur at the gateway position in the closely related rat and human oncomodulins.) Consistent with experimental observations, the results of our molecular dynamics simulations show that incorporation of aspartic acid at the gateway position is very disruptive to the structural integrity of the calcium ion coordination site in the whole protein. The aspartic acid mutation is somewhat less disruptive to the calcium ion coordination sites in the two parvalbumin fragments (i.e., the ABCD and CD fragments), presumably due to the higher degree of motional freedom allowable in these protein fragments. One problem associated with the E59D whole protein variant is a prohibitively close approach of the aspartate carboxyl group to the CD calcium ion observed in the energy-minimized (pre-molecular dynamics) structure. This steric situation does not emerge during energy-minimization of the wild-type protein. The damage to the structural integrity of the calcium ion coordination site in the whole protein E59D variant is not relieved during the molecular dynamics simulation. In fact, during the course of the 300 picosecond simulation, all of the calcium ion ligands leave the primary coordination sphere. In addition, the conserved hydrogen- bonds (in the short beta-sheet structure) that links the CD site to the symmetry-related EF site (in the non-mutated whole protein) is also somewhat disrupted in the E59D whole protein variant. These results suggest that the Ca(2+) ion binding deficiencies in the CD loop are related, at least in part, to the unique interaction that exists between the paired CD and EF hands in the whole protein. Our theoretical results correlate well with previous studies on engineered EF-hand proteins and with all of our experimental evidence on whole silver hake parvalbumin and enzymatically-generated parvalbumin fragments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号