首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the current study, we addressed two questions: First, is the olfactory placode necessary for the development of the olfactory bulb and the entire telencephalon? Second, does the olfactory placode contribute cells to the olfactory bulb? We addressed these questions by unilaterally ablating the olfactory placode in chick embryos before an olfactory nerve was produced and, in a second series of experiments, by replacing the ablated chick olfactory placode with a quail olfactory placode. Our results indicate that the olfactory placode is critical for olfactory bulb development, but is not necessary for the development of the rest of the telencephalon. Further, our results support the hypothesis that LHRH neurons and olfactory nerve glia originate in the olfactory placode, but do not support an olfactory placodal origin for other cell types within the olfactory bulb.  相似文献   

2.
嗅球对嗅觉信息的处理   总被引:2,自引:0,他引:2  
哺乳动物的嗅觉系统拥有惊人的能力,它可以识别和分辨成千上万种分子结构各异的气味分子。这种识别能力是由基因决定的。近年来,分子生物学和神经生理学的研究使得我们对嗅觉识别的分子基础和嗅觉系统神经连接的认识有了质的飞跃。气味分子的识别是由一千多种气味受体完成的,鼻腔中的嗅觉感觉神经元表达这些气味受体基因。每个感觉神经元只表达一种气味受体基因。表达同种气味受体的感觉神经元投射到嗅球表面的一个或几个嗅小球中,从而在嗅球中形成一个精确的二维连接图谱。了解嗅球对气味信息的加工和处理方式是我们研究嗅觉系统信号编码的一个重要环节。文章概述并总结了有关嗅球信号处理的最新研究成果。  相似文献   

3.
鱼类嗅觉系统和性信息素受体的研究进展   总被引:1,自引:0,他引:1  
鱼类嗅觉系统包括外部嗅觉器官、嗅神经和嗅球三个部分.嗅觉器官也称为嗅囊,由嗅上皮和髓质组成.气味物质的化学信息主要由嗅上皮上随机分布的嗅觉感受神经元感知,通过嗅神经将嗅觉信息传递到嗅球,嗅球在空间上有不同的功能分区,嗅觉信息经过嗅球各分区整合后分别传入端脑,发挥其生理功能.性信息素在鱼类生殖过程中的作用是通过嗅觉系统来完成的,其中嗅觉感受神经元上的性信息素受体起着重要作用.鱼类性信息素受体的研究主要从两个方面入手,一是从低浓度特异的性信息素引起嗅觉器官电生理反应或行为反应入手,寻找特异的性信息素受体;二是参照哺乳动物嗅觉受体的研究结果,从嗅觉受体基因遗传保守性入手,研究鱼类性信息素受体的结构与功能.  相似文献   

4.
The infection pattern of Kroeyerina elongata (Kroyeriidae, Copepoda) in the olfactory sacs of the blue shark, Prionace glauca, was investigated using 4,722 copepods from 54 olfactory sacs. Copepod prevalence and mean intensity of infection per olfactory sac were 94.0 and 91.1%, respectively, and the most intensely infected olfactory sac and shark hosted 218 and 409 copepods, respectively. There were significant linear relationships between the number of female and total copepods per left olfactory sac and shark fork length as well as between the numbers of female, male, and total copepods per shark and mean olfactory sac width and cumulative olfactory sac width. Female copepods typically outnumbered males within olfactory sacs (mean intensity = 65.7 and 26.3, respectively), and no statistical differences were detected between the numbers of copepods inhabiting the left and right olfactory sacs. Copepods were not evenly distributed within olfactory sacs. Typically, female copepods occupied olfactory chambers located centrally along the length of the olfactory sac, while males infected lateral olfactory chambers nearest the naris. The orientation of most copepods (84.6%) suggested positive rheotaxis relative to the path of water through the olfactory sac. Within olfactory chambers, most mature females (68.2%) infected the first third of the peripheral excurrent channel and the adjacent fringe of olfactory lamellae, while most males (91.7%) infected the olfactory lamellae, and the 4 larval females collected were attached within the lamellar field and grasped by males. Based on the observed infection patterns and the pattern of water flow throughout the olfactory sac, a hypothesis regarding the life cycle of K. elongata is advanced wherein infective copepodids are swept into the olfactory sac from the surrounding sea and initially colonize the olfactory lamellae. Copepodids feed and mature among the olfactory lamellae, and adult males search for mates and copulate with young females among the olfactory lamellae. Inseminated females move to the peripheral excurrent channels to mature and produce ovisacs. Hatching ovisacs release free-swimming nauplii into the excurrent water flow to be swept into the milieu, where they can molt into infective copepodids that may infect new hosts.  相似文献   

5.
Although N-CAM has previously been implicated in the growth and fasciculation of axons, the development of axon tracts in transgenic mice with a targeted deletion of the 180-kD isoform of the neural cell adhesion molecule (N-CAM-180) appears grossly normal in comparison to wild-type mice. We examined the organization of the olfactory nerve projection from the olfactory neuroepithelium to glomeruli in the olfactory bulb of postnatal N-CAM-180 null mutant mice. Immunostaining for olfactory marker protein revealed the normal presence of fully mature primary olfactory neurons within the olfactory neuroepithelium of mutant mice. The axons of these neurons form an olfactory nerve, enter the nerve fiber layer of the olfactory bulb, and terminate in olfactory glomeruli as in wild-type control animals. The olfactory bulb is smaller and the nerve fiber layer is relatively thicker in mutants than in wild-type mice. Previous studies have revealed that the plant lectin Dolichos biflorus agglutinin (DBA) clearly stains the perikarya and axons of a subpopulation of primary olfactory neurons. Thus, DBA staining enabled the morphology of the olfactory nerve pathway to be examined at higher resolution in both control and mutant animals. Despite a normal spatial pattern of DBA-stained neurons within the nasal cavity, there was a distorted axonal projection of these neurons onto the surface of the olfactory bulb in N-CAM-180 null mutants. In particular, DBA-stained axons formed fewer and smaller glomeruli in the olfactory bulbs of mutants in comparison to wild-type mice. Many primary olfactory axons failed to exit the nerve fiber layer and contribute to glomerular formation. These results indicate that N-CAM-180 plays an important role in the growth and fasciculation of primary olfactory axons and is essential for normal development of olfactory glomeruli. © 1997 John Wiley & Sons, Inc. J Neurobiol 32 : 643–658, 1997  相似文献   

6.
7.
8.
By immunocytochemistry, we have identified two novel cell types, olfactory and supporting cells of lamb olfactory epithelium, expressing S-100 beta beta protein. S-100 immune reaction product was observed on ciliary and plasma membranes, on axonemes and in the cytoplasm adjacent to plasma membranes and to basal bodies of olfactory vesicles. A brief treatment of olfactory mucosae with Triton X-100 before fixation is necessary for detection of S-100 beta beta protein within olfactory vesicles. In the absence of such a treatment, the immune reaction product is restricted to ciliary and plasma membranes. On the other hand, irrespective of pre-treatment of olfactory mucosae, S-100 beta immune reaction product in supporting cells is restricted to microvillar and plasma membranes. The anti-S-100 beta antiserum used in these studies does not bind to basal cells of the olfactory epithelium or to cells of the olfactory glands, whereas it binds to Schwann cells of the olfactory nerve. An anti-S-100 alpha antiserum does not bind to cellular elements of the olfactory mucosa, Schwann cells, or axons of the olfactory nerve. The present data provide, for the first time, evidence for the presence of S-100 beta beta protein in mammalian neurons (olfactory cells).  相似文献   

9.
Transregulation of erbB expression in the mouse olfactory bulb.   总被引:2,自引:0,他引:2  
Previously, we have shown that erbB-3 expression is restricted to the ensheathing cells of the olfactory nerve layer, while erbB-4 is found in the periglomerular and mitral/tufted cells of the olfactory bulb and in cells coming out from the rostral migratory stream of the subependymal layer. In the present work, we have treated adult mice with zinc sulfate intranasal irrigation and analyzed erbB-3 and erbB-4 expression in the deafferented olfactory bulb. Following treatment, olfactory axons undergo degeneration, as indicated by the loss of OMP expression in the deafferented olfactory bulb. The thickness of the olfactory nerve layer is reduced, but the specific intensity of erbB-3 labeling in the remaining olfactory nerve layer is increased with respect to control. Interestingly, following deafferentation, erbB-4 immunoreactivity decreases specifically in cell types that normally make synaptic contacts with primary olfactory neurons in the glomeruli, i.e. periglomerular and mitral/tufted cells. Partial lesion of the olfactory epithelium allows regenerative axon growth of olfactory neurons to the olfactory bulb. Following olfactory axon regeneration, erbB-3 and erbB-4 immunoreactivity in the olfactory bulb is similar to control. Thus, like tyrosine hydroxylase, the down regulation of erbB-4 expression in the periglomerular cells is reversible.  相似文献   

10.
The olfactory bulb as an independent developmental domain   总被引:2,自引:0,他引:2  
The olfactory system is a good model to study the mechanisms underlying guidance of growing axons to their appropriate targets. The formation of the olfactory bulb involves differentiation of several populations of cells and the initiation of the central projections, all under the temporal and spatial patterns of gene expression. Moreover, the nature of interactions between the olfactory epithelium, olfactory bulb and olfactory cortex at early developmental stages is currently of great interest. To explore these questions more fully, the present review aims to correlate recent data from different developmental studies, to gain insight into the mechanisms involved in the specification and development of the olfactory system. From our studies in the pax6 mutant mice (Sey(Neu)/Sey(Neu)), it was concluded that the initial establishment of the olfactory bulb central projections is able to proceed independently of the olfactory sensory axons from the olfactory epithelium. The challenge that now remains is to consider the validity of the olfactory bulb as an independent development domain. In the course of evaluating these ideas, we will review the orchestra of molecular cues involved in the formation of the projection from the OB to the olfactory cortex.  相似文献   

11.
除单鼻型的圆口类外, 脊椎动物的左、右两侧嗅觉器官和嗅神经皆互为独立地分布于头前端, 而且它们的前鼻孔(外鼻孔)、嗅腔、嗅觉副囊腔(部分鱼具嗅觉副囊)与后鼻孔(或内鼻孔)也都互为相通, 且多呈开放状态。它们还通常具有一个体积相对较大且较稳定的嗅腔, 而嗅上皮则多位于嗅腔的一侧。此外, 鱼类的嗅囊与鼻窝之间通常也无明显间隙。然而, 运用常规的解剖学方法发现, 黄鳝(Monopterus albus)外周嗅觉系统(嗅觉器官和嗅神经)在解剖结构上已发生如下重大变化: (1)虽然具有前、后鼻孔, 但两者互不相通, 而嗅腔仅靠前鼻孔通至外界; (2)两侧嗅囊的末端及两侧嗅神经的前段均分别发生了合并。此外, 在该鱼上还发现:(1)嗅囊为一柔软而扁塌的长管囊结构, 其唯一的开口(即位于前鼻孔球上的前鼻孔)却常呈关闭状, 故此时该嗅腔实际上是一个体积被压扁到最小且暂时被封闭的空间; (2)嗅囊纵向地贴附于长鼻窝的内侧壁上, 它仅占鼻窝的一小部分空间, 故鼻窝显得相对很宽敞; (3)嗅觉副囊不与嗅腔相通, 而与鼻窝共同经后鼻孔通至外界; (4)两侧嗅囊的末端相向地穿越鼻窝内侧壁, 进入筛骨与额骨之间的“筛-额横管”, 在那里发生嗅囊合并;(5)嗅囊壁周缘几乎都内衬着嗅上皮, 且具数个褶窝(说明该嗅囊有扩张的可能)。因此, 黄鳝的这套解剖学特征不同于包括鱼类在内的所有脊椎动物的外周嗅觉系统。研究所发现的黄鳝这套形态学特征不仅为脊椎动物外周嗅觉系统的研究提供了一个独特的解剖学新模型, 同时也为动物进化研究提供了一个有关前、后鼻孔互不相通的进化特例。此外, 研究还依据上述发现提出嗅囊扩张-压缩假说以解释气味媒质进出于黄鳝这种特殊嗅腔的动力学机制。    相似文献   

12.
This first comprehensive study of the peripheral olfactory organ from a representative of the large and economically important order of teleost fishes, the Perciformes, shows a compact structure with olfactory sensory neurons distributed widely throughout the olfactory chamber. The spatial organization of the nasal cavity in the bottom-dwelling round goby (Gobiidae, Neogobius melanostomus) was examined using impression material injection, immunocytochemistry, and transmission electron microscopy. The olfactory chamber contains a single olfactory lamella; prominent dorsocaudal lachrymal and ethmoidal accessory nasal sacs are situated ventrocaudal to the chamber. The location of the olfactory mucosa within the olfactory chamber is novel for teleost fish, as it extends beyond the ventral surface to the lateral and dorsal regions. Microvillar olfactory sensory neurons and ciliated olfactory sensory neurons were identified by transmission electron microscopy and the spatial distribution of these two cell types was assessed through immunocytochemistry against olfactory receptor coupled G-proteins. Both G(alphaolf)-immunoreactive ciliated olfactory sensory neurons and the G(alphao)-immunoreactive microvillar form were located throughout the olfactory epithelium. Ciliated crypt cells were G(alphao) immunoreactive and were found throughout the olfactory epithelium of some specimens. The widespread occurrence of olfactory sensory neurons in the olfactory chamber supports the idea that olfactory signaling is important to the survival of the round goby. The prominence of the lachrymal and ethmoidal accessory nasal sacs indicates the capacity to regulate the flow of odorant molecules over the sensory surface of the olfactory sensory neurons, possibly through a pump-like mechanism driven by opercular activity associated with gill ventilation.  相似文献   

13.
Partial deafferentation of the olfactory bulb in Xenopus embryos was performed to analyze the effects of afferent innervation on the development of the central olfactory structure. In an attempt to analyze a possible early inductive role of the olfactory axons, one olfactory placode was removed before differentiation of the neural tube began (stages 26–31). A morphological and quantitative analysis was performed on larvae at the onset of metamorphic climax (stage 58). When the single olfactory nerve innervated one side of the rostral telencephalon, a single olfactory bulb developed on that side and no olfactory bulb formed on the contralateral side. When the nerve innervated the midline of the rostral telencephalon, a smaller-than-normal, fused olfactory bulb developed. Partial deafferentation at these early stages resulted in a significant reduction in the number of olfactory axons (to approximately one-half of control values) and a corresponding decrease in the number of mitral/tufted cells (output neurons of the olfactory bulb). To control for possible damage to the neural tube during olfactory-placode removal, a portion of the neural tube directly beneath one of the olfactory placodes was removed in embryos. In these animals, the neural tube regenerated within 24 h and formed a normal olfactory bulb; olfactory axon and mitral/tufted-cell numbers were not significantly different from controls. In conclusion, olfactory-afferent innervation was critical for differentiation of the olfactory bulb, and decreasing the number of olfactory axons resulted in a reduction in the number of output neurons of the olfactory bulb. © 1993 John Wiley & Sons, Inc.  相似文献   

14.
The olfactory epithelium has the ability to respond to a large number of volatile compounds of small molecular weight. Ultimately, such a property lies on a specialized type of neuron, the olfactory receptor cell. In the presence of odorants, the olfactory receptor neuron responds with action potentials whose frequency depends on odorant concentration. The primary events in the process of olfactory transduction are thought to occur at the cilia of olfactory receptor neurons and involve the binding of odorants to receptor molecules followed by the opening of ion channels. A crucial step in understanding olfactory transduction requires identifying the mechanisms that regulate the electrical activity of olfactory cells. In the last couple of years, patch-clamp recording from isolated olfactory cells and reconstitution of olfactory membranes in planar lipid bilayers have begun to shed light on some of these mechanisms. Although the information emerging from such studies is still preliminary, there are already well-defined hypotheses on the molecular events that might underlie the primary events in olfactory transduction. Currently, attention is being focused on the notions that second messengers might be involved in the activation of ion channels in olfactory cilia, and that odorant binding to a receptor molecule might lead directly to the gating of ion channels in chemosensory olfactory membranes. The coming years promise to be exciting ones in the field of olfactory transduction. We have now the necessary tools to be able to confront hypotheses and experimental facts.  相似文献   

15.
This study examined olfactory sensory neuron morphology and physiological responsiveness in newly hatched sea lamprey, Petromyzon marinus L. These prolarvae hatch shortly after neural tube formation, and stay within nests for approximately 18 days, before moving downstream to silty areas where they burrow, feed and pass to the larval stage. To explore the possibility that the olfactory system is functioning during this prolarval stage, morphological and physiological development of olfactory sensory neurons was examined. The nasal cavity contained an olfactory epithelium with ciliated olfactory sensory neurons. Axons formed aggregates in the basal portion of the olfactory epithelium and spanned the narrow distance between the olfactory epithelium and the brain. The presence of asymmetric synapses with agranular vesicles within fibers in the brain, adjacent to the olfactory epithelium suggests that there was synaptic connectivity between olfactory sensory axons and the brain. Neural recordings from the surface of the olfactory epithelium showed responses following the application of L-arginine, taurocholic acid, petromyzonol sulfate (a lamprey migratory pheromone), and water conditioned by conspecifics. These results suggest that lampreys may respond to olfactory sensory input during the prolarval stage.  相似文献   

16.
Olfactory learning   总被引:8,自引:0,他引:8  
Davis RL 《Neuron》2004,44(1):31-48
The olfactory nervous systems of insects and mammals exhibit many similarities, suggesting that the mechanisms for olfactory learning may be shared. Neural correlates of olfactory memory are distributed among many neurons within the olfactory nervous system. Perceptual olfactory learning may be mediated by alterations in the odorant receptive fields of second and/or third order olfactory neurons, and by increases in the coherency of activity among ensembles of second order neurons. Operant olfactory conditioning is associated with an increase in the coherent population activity of these neurons. Olfactory classical conditioning increases the odor responsiveness and synaptic activity of second and perhaps third order neurons. Operant and classical conditioning both produce an increased responsiveness to conditioned odors in neurons of the basolateral amygdala. Molecular genetic studies of olfactory learning in Drosophila have revealed numerous molecules that function within the third order olfactory neurons for normal olfactory learning.  相似文献   

17.
视觉和嗅觉信号对果蝇食物搜寻行为的协同作用   总被引:1,自引:0,他引:1  
冯波  王霞  李岩  杜永均 《昆虫学报》2013,56(7):792-798
为了探索视觉和嗅觉信号在昆虫食物搜寻过程中的作用, 本研究利用杨梅和橘子为引诱物, 在实验室条件下测定了嗅觉和视觉信号诱集到的黑腹果蝇Drosophila melanogaster数量, 分析了嗅觉经历对果蝇嗅觉和视觉食物搜寻的影响。发现同源性嗅觉和视觉信号存在的杨梅诱集到的果蝇数量显著大于单一的视觉信号和嗅觉信号, 但异源性嗅觉和视觉信号组合诱集到的果蝇数量和单独的嗅觉信号相似。嗅觉信号预处理不仅能够显著增加嗅觉信号诱集到的果蝇数量, 其中杨梅嗅觉信号对杨梅预处理果蝇的吸引能力与视觉和嗅觉信号存在的杨梅相似, 而且异源性嗅觉和视觉信号组合诱集到的预处理果蝇数量也不低于视觉和嗅觉信号存在的杨梅。另外杨梅嗅觉信号预处理也能够显著增强杨梅视觉信号诱集到的果蝇数量。但嗅觉预处理并不会改变同源性视觉和嗅觉信号组合诱集到的果蝇数量。本研究表明, 果蝇同时利用视觉和嗅觉信号进行食物搜寻, 因此同源性视觉和嗅觉信号在果蝇诱集过程中具有协同作用。另外果蝇具有较强的记忆和学习能力, 能够将记忆中的嗅觉信号应用于食物搜寻。本研究结果不仅有利于我们了解果蝇在自然状态下的食物搜寻机制, 而且有利于开发更有效的果蝇新型诱捕器。  相似文献   

18.
The aim of this study was to investigate the accuracy of self-reported ratings of olfactory function in 83 healthy subjects. Such ratings were compared with quantitative measures of olfactory function, as well as with ratings of nasal patency. In experiment 1 subjects rated olfactory function and nasal patency before olfactory testing, whereas in experiment 2 the reverse was the case. No feedback regarding test results were provided until after completion of the testing. The principal findings were: (i) when ratings preceded measurements of olfactory function, there was no significant correlation between the two parameters. However, ratings of olfactory function correlated significantly with ratings of nasal airway patency. (ii) In contrast, when measurements of olfactory function preceded the ratings, this constellation switched. Now ratings of olfactory function correlated significantly with measured olfactory function, whereas there was no significant correlation between ratings of nasal airway patency and ratings of olfactory function. In conclusion, these data suggest that ratings of olfactory function are unreliable in healthy, untrained subjects. The ratings seem to reflect changes of nasal airway patency to a larger degree than measurable olfactory function. The results further indicate that this is mainly due to the limited attention the sense of smell receives in daily life.  相似文献   

19.
Stereotypical connections between olfactory sensory neuron axons and mitral cell dendrites in the olfactory bulb establish the first synaptic relay for olfactory perception. While mechanisms of olfactory sensory axon targeting are reported, molecular regulation of mitral cell dendritic growth and refinement are unclear. During embryonic development, mitral cell dendritic distribution overlaps with olfactory sensory axon terminals in the olfactory bulb. In this study, we investigate whether olfactory sensory neurons in the olfactory epithelium influence mitral cell dendritic outgrowth in vitro. We report a soluble trophic activity in the olfactory epithelium conditioned medium which promotes mitral/tufted cell neurite outgrowth. While the trophic activity is present in both embryonic and postnatal olfactory epithelia, only embryonic but not postnatal mitral/tufted cells respond to this activity. We show that BMP2, 5 and 7 promote mitral/tufted cells neurite outgrowth. However, the BMP antagonist, Noggin, fails to neutralize the olfactory epithelium derived neurite growth promoting activity. We provide evidence that olfactory epithelium derived activity is a protein factor with molecular weight between 50–100 kD. We also observed that Follistatin can effectively neutralize the olfactory epithelium derived activity, suggesting that TGF-beta family proteins are involved to promote mitral/tufted dendritic elaboration.  相似文献   

20.
哺乳动物主要嗅觉系统和犁鼻系统信息识别的编码模式   总被引:4,自引:0,他引:4  
哺乳动物具有两套嗅觉系统, 即主要嗅觉系统和犁鼻系统。前者对环境中的大多数挥发性化学物质进行识别, 后者对同种个体释放的信息素进行识别。本文从嗅觉感受器、嗅球、嗅球以上脑区三个水平综述了这两种嗅觉系统对化学信息识别的编码模式。犁鼻器用较窄的调谐识别信息素成分, 不同于嗅上皮用分类性合并受体的方式识别气味; 副嗅球以接受相同受体输入的肾丝球所在区域为单位整合信息, 而主嗅球通过对肾丝球模块的特异性合并编码信息; 在犁鼻系统, 信息素的信号更多地作用于下丘脑区域, 引起特定的行为和神经内分泌反应。而在主要嗅觉系统, 嗅皮层可能采用时间模式编码神经元群, 对气味的最终感受与脑的不同区域有关。犁鼻系统较主要嗅觉系统的编码简单, 可能与其执行的功能较少有关。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号