首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Adiponectin exerts anti-inflammatory effects via macrophages, suppressing the production of pro-inflammatory cytokines in response to bacterial lipopolysaccharide (LPS). Here, we provide experimental evidence that the "anti-inflammatory" effect of adiponectin may be due to an induction of macrophage tolerance: globular adiponectin (gAd) is a powerful inducer of TNF-alpha and IL-6 secretion in primary human peripheral macrophages, in the THP-1 human macrophage cell line, and in primary mouse peritoneal macrophages. Pre-exposure of macrophages to 10 microg/ml gAd rendered them tolerant to further gAd exposure or to other pro-inflammatory stimuli such as TLR3 ligand polyI:C and TLR4 ligand LPS, while pre-exposure to 1 microg/ml of and re-exposure to 10 microg/ml gAd unmasked its pro-inflammatory properties. GAd induced NF-kappaB activation and tolerance to further gAd or LPS exposure. Our data suggest that adiponectin constant presence in the circulation in high levels (in lean subjects) renders macrophages resistant to pro-inflammatory stimuli, including its own.  相似文献   

2.
Adiponectin, a fat-derived factor, is downregulated in insulin resistance and obesity; insulin resistance has been demonstrated during late pregnancy in both humans and in rodents. The present study examines the physiological change of adiponectin gene expression as well as the circulating levels of adiponectin during pregnancy. We examined the relative quantity of adiponectin mRNA produced in the adipose tissues of pregnant compared to virgin mice. We also measured serum adiponectin levels and parametrial adipocyte size in mice throughout pregnancy. Adiponectin mRNA was significantly reduced by 74 +/- 8 % and 63 +/- 4 % at days 15 and 18 of pregnancy, respectively, compared to virgin mice. Serum adiponectin concentration decreased on days 15 (30.7 +/- 8.5 microg/ml) and 18 (27.9 +/- 8.7 microg/ml) of pregnancy, and the values were significantly lower than that of virgin mice (56.8 +/- 6.6 microg/ml). Parametrial adipocytes from mice on days 15 and 18 of pregnancy were significantly larger than in virgin mice or during early pregnancy. Fat-cell size was closely correlated to degradation of adiponectin gene expression and serum adiponectin levels. These results suggest that changes of adiponectin expression affect metabolic status in pregnant mice.  相似文献   

3.
Exposure to high fatty acids (FAs) induces whole body and skeletal muscle insulin resistance. The globular form of the adipokine, adiponectin (gAd), stimulates FA oxidation and improves insulin sensitivity; however, its ability to prevent lipid-induced insulin resistance in humans has not been tested. The purpose of this study was to determine 1) whether acute (4 h) exposure to 2 mM palmitate would impair insulin signaling and glucose transport in isolated human skeletal muscle, 2) whether muscle from obese humans is more susceptible to the effects of palmitate, and 3) whether the presence of 2 mM palmitate + 2.5 mug/ml gAd (P+gAd) could prevent the effects of palmitate. Insulin-stimulated (10 mU/ml) glucose transport was not different, relative to control, following exposure to palmitate (-10%) or P+gAd (-3%) in lean muscle. In obese muscle, the absolute increase in glucose transport from basal to insulin-stimulated conditions was significantly decreased following palmitate (-55%) and P+gAd (-36%) exposure (control vs. palmitate; control vs. P+gAd, P < 0.05). There was no difference in the absolute increase in glucose transport between palmitate and P+gAd, indicating that in the presence of palmitate, gAd did not improve glucose transport. The palmitate-induced reduction in insulin-stimulated glucose transport in muscle from obese individuals may have been due to reduced Ser Akt (control vs. palmitate; P+gAd, P < 0.05) and Akt substrate 160 (AS160) phosphorylation (control vs. palmitate; P+gAd, P < 0.05). FA oxidation was significantly increased in muscle of lean and obese individuals in the presence of gAd (P < 0.05), suggesting that the stimulatory effects of gAd on FA oxidation may not be sufficient to entirely prevent palmitate-induced insulin resistance in obese muscle.  相似文献   

4.
The adipocyte-derived hormone adiponectin has been shown to play important roles in the regulation of energy homeostasis and insulin sensitivity. In this study, we analyzed globular domain adiponectin (gAd) transgenic (Tg) mice crossed with leptin-deficient ob/ob or apoE-deficient mice. Interestingly, despite an unexpected similar body weight, gAd Tg ob/ob mice showed amelioration of insulin resistance and beta-cell degranulation as well as diabetes, indicating that globular adiponectin and leptin appeared to have both distinct and overlapping functions. Amelioration of diabetes and insulin resistance was associated with increased expression of molecules involved in fatty acid oxidation such as acyl-CoA oxidase, and molecules involved in energy dissipation such as uncoupling proteins 2 and 3 and increased fatty acid oxidation in skeletal muscle of gAd Tg ob/ob mice. Moreover, despite similar plasma glucose and lipid levels on an apoE-deficient background, gAd Tg apoE-deficient mice showed amelioration of atherosclerosis, which was associated with decreased expression of class A scavenger receptor and tumor necrosis factor alpha. This is the first demonstration that globular adiponectin can protect against atherosclerosis in vivo. In conclusion, replenishment of globular adiponectin may provide a novel treatment modality for both type 2 diabetes and atherosclerosis.  相似文献   

5.
Li L  Wu L  Wang C  Liu L  Zhao Y 《Regulatory peptides》2007,139(1-3):72-79
Adiponectin, an adipocyte-derived polypeptide hormone, plays an important role in regulating fatty acid oxidation. beta-oxidation of fatty acids supplies most of the cardiac energy and carnitine palmitoyltransferase (CPT)-1 serves as a key regulator during this process. To characterize the potential effects of adiponectin on CPT-1, we incubated rat neonatal cardiomyocytes with globular adiponectin (gAd). Results showed that gAd promoted the activity and mRNA expression of CPT-1. The underlying signal pathway involved in this modulatory effect was further investigated. Inhibition of AMP-activated protein kinase (AMPK) with adenine 9-beta-d-arabinofuranoside (AraA) completely abrogated gAd-mediated AMPK and acetyl coenzyme A carboxylase (ACC) phosphorylation and suppressed the promotion of CPT-1 activity. gAd also induced the phosphorylation of p38 mitogen-activated protein kinase (MAPK) and peroxisome proliferator-activated receptor (PPAR)-alpha, which was inhibited by AraA. SB202190, a p38MAPK inhibitor, blocked gAd-stimulated PPAR-alpha phosphorylation. When AMPK and/or p38MAPK was inhibited, gAd-enhanced mRNA expression of CPT-1 was partially reduced. In conclusion, our study suggests that the activation of AMPK signaling cascade participates in the promotion effect of gAd on CPT-1.  相似文献   

6.
Leptin regulates fatty acid metabolism in liver, skeletal muscle, and pancreas by partitioning fatty acids into oxidation rather than triacylglycerol (TG) storage. Although leptin receptors are present in the heart, it is not known whether leptin also regulates cardiac fatty acid metabolism. To determine whether leptin directly regulates cardiac fatty acid metabolism, isolated working rat hearts were perfused with 0.8 mm [9,10-(3)H]palmitate and 5 mm [1-(14)C]glucose to measure palmitate and glucose oxidation rates. Leptin (60 ng/ml) significantly increased palmitate oxidation rates 60% above control hearts (p < 0.05) and decreased TG content by 33% (p < 0.05) over the 60-min perfusion period. In contrast, there was no difference in glucose oxidation rates between leptin-treated and control hearts. Although leptin did not affect cardiac work, oxygen consumption increased by 30% (p < 0.05) and cardiac efficiency was decreased by 42% (p < 0.05). AMP-activated protein kinase (AMPK) plays a major role in the regulation of cardiac fatty acid oxidation by inhibiting acetyl-CoA carboxylase (ACC) and reducing malonyl-CoA levels. Leptin has also been shown to increase fatty acid oxidation in skeletal muscle through the activation of AMPK. However, we demonstrate that leptin had no significant effect on AMPK activity, AMPK phosphorylation state, ACC activity, or malonyl-CoA levels. AMPK activity and its phosphorylation state were also unaffected after 5 and 10 min of perfusion in the presence of leptin. The addition of insulin (100 microunits/ml) to the perfusate reduced the ability of leptin to increase fatty acid oxidation and decrease cardiac TG content. These data demonstrate for the first time that leptin activates fatty acid oxidation and decreases TG content in the heart. We also show that the effects of leptin in the heart are independent of changes in the AMPK-ACC-malonyl-CoA axis.  相似文献   

7.
Adiponectin is an adipocytokine that is hypothesized to be involved in the regulation of insulin action. The purpose of the present investigation was to determine whether plasma adiponectin is altered in conjunction with enhanced insulin action with exercise training. An insulin sensitivity index (S(I)) and fasting levels of glucose, insulin, and adiponectin were assessed before and after 6 mo of exercise training (4 days/wk for approximately 45 min at 65-80% peak O(2) consumption) with no loss of body mass (PRE, 91.9 +/- 3.8 kg vs. POST, 91.6 +/- 3.9 kg) or fat mass (PRE, 26.5 +/- 1.8 kg vs. POST, 26.7 +/- 2.2 kg). Insulin action significantly (P < 0.05) improved with exercise training (S(I) +98%); however, plasma adiponectin concentration did not change (PRE, 6.3 +/- 1.5 microg/ml vs. POST, 6.6 +/- 1.8 microg/ml). In contrast, in a separate group of subjects examined before and after weight loss, there was a substantial increase in adiponectin (+281%), which was accompanied by enhanced insulin action (S(I), +432%). These data suggest that adiponectin is not a contributory factor to the exercise-related improvements in insulin sensitivity.  相似文献   

8.
Reduced plasma adiponectin levels are associated with insulin resistance. Black South Africans, like African Americans, are more insulin-resistant than BMI-matched white subjects, as are Asian Indians. We investigated whether this interethnic variation in insulin resistance is due to differences in plasma adiponectin levels. Blood and anthropometric measurements were taken from black, white and Asian-Indian subjects. Serum adiponectin, lipids, glucose and insulin were measured; insulin sensitivity was calculated using HOMA. Black (HOMA = 2.62 +/- 0.99) and Asian-Indian subjects (HOMA = 3.41 +/- 2.85) were more insulin-resistant than BMI-matched white (HOMA = 1.76 +/- 0.63) subjects (p = 0.0001). Furthermore, the white subjects had higher adiponectin levels (8.11 +/- 4.39 microg/ml) compared to black (5.71 +/- 2.50 microg/ml) and Asian Indian (5.86 +/- 2.50 microg/ml) subjects (p = 0.003). When all ethnic groups were combined, multiple regression analysis demonstrated that serum adiponectin levels corrected for BMI and ethnicity did not correlate with HOMA, but did explain 10.0 % of the variance in HDL-cholesterol levels. Within each ethnic group, adiponectin only correlated inversely with HOMA in white subjects. Adiponectin may play a role in determining serum HDL-cholesterol levels, but ethnic variation in insulin sensitivity is not dependent on serum levels of this adipokine. The relationship between adiponectin and insulin resistance varies across ethnic groups.  相似文献   

9.
Triglyceride turnover in reperfused/ischemic rat hearts was investigated. Hearts were initially perfused under aerobic conditions for a 1-h "pulse" perfusion with 1.2 mM [1-14C]palmitate to label the endogenous lipid pools, followed by a 30-min period of no-flow ischemia or a 10-min period of retrograde perfusion (control). Hearts were then reperfused under aerobic conditions with buffer containing 1.2 mM [9,10-3H]palmitate. All buffers contained 11 mM glucose and 500 microunits/ml insulin. Rates of endogenous triglyceride lipolysis and synthesis were measured during reperfusion, whereas rates of exogenous palmitate oxidation were measured both prior to ischemia and during reperfusion following ischemia. During reperfusion of ischemic hearts, a 20% increase in exogenous fatty acid oxidation rates was seen compared with pre-ischemic rates. Despite an initial burst of endogenous fatty acid oxidation, no acceleration of steady state endogenous triglyceride lipolysis was seen compared with their nonischemic hearts. In contrast, a significant increase in triglyceride synthesis was observed. Triglyceride turnover was also measured in a series of hearts reperfused following ischemia in the absence of exogenous fatty acids. A significant enhancement of functional recovery was seen compared with hearts reperfused with 1.2 mM palmitate. In addition, a significant increase in fatty acid oxidation from endogenous triglyceride lipolysis was observed. We conclude that the heart quickly recovers its ability to oxidize exogenous fatty acids during reperfusion and that although triglyceride lipolysis is not accelerated during reperfusion of ischemic hearts in the presence of 1.2 mM palmitate, a significant increase in triglyceride synthesis does occur.  相似文献   

10.
The aim of the current investigation was to determine the possible relationships of fasting adiponectin level with body composition, bone mineral, insulin sensitivity, leptin, and cardiorespiratory fitness parameters in 153 women. Subjects were classified as premenopausal (n = 42; 40.8 +/- 5.7 yr) if they had regular menstrual periods, early postmenopausal (n = 49; 56.7 +/- 3.6 yr) if they had been postmenopausal for more than >1 yr but <7 yr (5.5 +/- 1.3 yr), and postmenopausal (n = 62; 72.2 +/- 4.5 yr) if they had been postmenopausal for >7 yr. All women studied had a body mass index (BMI) <30 kg/m(2). Adiponectin values were higher (P < 0.05) in middle-aged (12.0 +/- 5.1 microg/ml) and older (15.3 +/- 7.3 microg/ml) postmenopausal women compared with middle-aged premenopausal women (8.4 +/- 3.2 microg/ml). Mean plasma adiponectin concentration in the total group of women (n = 153) was 12.2 +/- 6.3 microg/ml and was positively related (P < 0.05) to age, indexes of overall obesity (BMI, body fat mass), and cardiorespiratory fitness (PWC) values. In addition, a negative association (P < 0.05) between adiponectin with central obesity (waist-to-hip and waist-to-thigh ratio), fat-free mass, bone mineral (bone mineral content, total and lumbar spine bone mineral density), and leptin and insulin resistance (insulin, fasting insulin resistance index) values was observed. However, multivariate regression analysis revealed that only age, fasting insulin resistance index, and leptin were independent predictors of adiponectin concentration. In conclusion, circulating adiponectin concentrations increase with age in normal-weight middle-aged and older women. It appears that adiponectin is independently related to age, leptin, and insulin resistance values in women across the age span and menstrual status.  相似文献   

11.
Most rodent models of insulin resistance are accompanied by decreased circulating adiponectin levels. Adiponectin treatment improves the metabolic phenotype by increasing fatty acid oxidation in skeletal muscle and suppressing hepatic glucose production. Muscle IGF-I receptor (IGF-IR)-lysine-arginine (MKR) mice expressing dominant-negative mutant IGF-IRs in skeletal muscle are diabetic with insulin resistance in muscle, liver, and adipose tissue. Adiponectin levels are elevated in MKR mice, suggesting an unusual discordance between insulin resistance and adiponectin responsiveness. Therefore, we investigated the metabolic actions of adiponectin in MKR mice. MKR and ob/ob mice were treated both acutely (28 microg/g) and chronically (for 2 wk) with full-length adiponectin. Acute hypoglycemic effects of adiponectin were evident only in ob/ob mice but not in MKR mice. Chronic adiponectin treatment significantly improved both insulin sensitivity and glucose tolerance in ob/ob but not in MKR mice. Adiponectin receptor mRNA levels and adiponectin-stimulated phosphorylation of AMPK in skeletal muscle and liver were similar among MKR, wild-type, and ob/ob mice. Thus MKR mice are adiponectin resistant despite normal expression of adiponectin receptors and normal AMPK phosphorylation in muscle and liver. MKR mice may be a useful model for dissecting relationships between insulin resistance and adiponectin action in regulation of glucose homeostasis.  相似文献   

12.
Myocardial glucose oxidation is markedly reduced in the uncontrolled diabetic. We determined whether this was due to direct biochemical changes in the heart or whether this was due to altered circulating levels of insulin and substrates that can be seen in the diabetic. Isolated working hearts from control or diabetic rats (streptozotocin, 55 mg/kg iv administered 6 wk before study) were aerobically perfused with either 5 mM [(14)C]glucose and 0.4 mM [(3)H]palmitate (low-fat/low-glucose buffer) or 20 mM [(14)C]glucose and 1.2 mM [(3)H]palmitate (high-fat/high-glucose buffer) +/-100 microU/ml insulin. The presence of insulin increased glucose oxidation in control hearts perfused with low-fat/low-glucose buffer from 553 +/- 85 to 1,150 +/- 147 nmol x g dry wt(-1) x min(-1) (P < 0. 05). If control hearts were perfused with high-fat/high-glucose buffer, palmitate oxidation was significantly increased by 112% (P < 0.05), but glucose oxidation decreased to 55% of values seen in the low-fat/low-glucose group (P < 0.05). In diabetic hearts, glucose oxidation was very low in hearts perfused with low-fat/low-glucose buffer (9 +/- 1 nmol x g dry wt(-1) x min(-1)) and was not altered by insulin or high-fat/high-glucose buffer. These results suggest that neither circulating levels of substrates nor insulin was responsible for the reduced glucose oxidation in diabetic hearts. To determine if subcellular changes in the control of fatty acid oxidation contribute to these changes, we measured the activity of three enzymes involved in the control of fatty acid oxidation; AMP-activated protein kinase (AMPK), acetyl-CoA carboxylase (ACC), and malonyl-CoA decarboxylase (MCD). Although AMPK and ACC activity in control and diabetic hearts was not different, MCD activity and expression in all diabetic rat heart perfusion groups were significantly higher than that seen in corresponding control hearts. These results suggest that an increased MCD activity contributes to the high fatty acid oxidation rates and reduced glucose oxidation rates seen in diabetic rat hearts.  相似文献   

13.
BACKGROUND: Adiponectin is an adipose tissue-specific protein, which possesses anti-atherogenic and antidiabetic properties, yet its plasma levels are decreased in subjects with metabolic syndrome. Although high fat diet has been linked to hypoadiponectinemia, the effect of high-carbohydrate diet on adiponectin levels is not known. Therefore, we studied the effect of high-carbohydrate diet on adiponectin levels in the rat models of hypertension and insulin resistance. METHODS: Rats were randomly assigned to the high carbohydrate diet [Sprague-Dawley rats with fructose enriched diet (SDR-F) and spontaneously hypertensive rats with sucrose enriched diet (SHR-S model)] or chow diet (Control group). Rats were followed for 6 weeks (SDR-F model) and 8 weeks (SHR-S model). Body weight, systolic blood pressure, plasma levels of glucose, insulin, triglycerides and adiponectin, were recorded. RESULTS: Both models were associated with features of the metabolic syndrome, namely, high insulin levels, increased blood pressure and triglyceride levels. Plasma adiponectin levels did not change in the control groups. In contrast, adiponectin levels increased by 39 and 30% compared to baseline following four and six weeks of fructose enriched diet in SDR (from 3.3+/-0.2 to 4.5+/-0.4 and 4.3+/-0.2 microg/ml, respectively, p<0.05). Likewise, five and eight weeks of sucrose enriched diet in SHR, induced a 54 and 81% increase in adiponectin levels compared to baseline (from 4.2+/-0.3 to 6.3+/-0.3 and 7.3+/-0.5 microg/ml, respectively, p<0.01). CONCLUSION: Metabolic stress with a high-carbohydrate diet increases plasma levels of adiponectin. Further studies will elucidate whether this is a transitory compensatory mechanism or a sign of target organ resistance to adiponectin.  相似文献   

14.
High-fat (HF) diets induce insulin resistance and alter lipid metabolism, although controversy exists regarding the impact of saturated vs. polyunsaturated fats. Adiponectin (Ad) stimulates fatty acid (FA) oxidation and improves insulin sensitivity in humans and rodents, due in part to the activation of AMP-activated protein kinase (AMPK) and subsequent deactivation of acetyl coenzyme A carboxylase (ACC). In genetically obese, diabetic mice, this acute stimulatory effect on AMPK in muscle is lost. The ability of a HF diet to induce skeletal muscle Ad resistance has not been examined. The purpose of this study was to determine whether Ad's effects on FA oxidation and AMPK/ACC would be reduced following different HF diets, and if this coincided with the development of impaired maximal insulin-stimulated glucose transport. Rats were fed a control (10% kcal fat, CON), high unsaturated fat (60% kcal safflower oil, SAFF), or high saturated fat diet (60% kcal lard, LARD) for 4 wk. Following the dietary intervention, glucose transport, lipid metabolism, and AMPK/ACC phosphorylation were measured in the presence and absence of globular Ad (gAd, 2.5 microg/ml) in isolated soleus muscle. LARD rats showed reduced rates of maximal insulin-stimulated glucose transport compared with CON and SAFF (+68 vs. +172 and +184%, P < or = 0.001). gAd increased pACC (+25%, P < or = 0.01) and FA oxidation (+28%, P < or = 0.05) in CON rats, but not in either HF group. Thus 4 wk of HF feeding results in the loss of gAd stimulatory effect on ACC phosphorylation and muscle FA oxidation, and this can occur independently of impaired maximal insulin-stimulated glucose transport.  相似文献   

15.
Clinical and experimental evidence suggest that increased rates of fatty acid oxidation in the myocardium result in impaired contractile function in both normal and diabetic hearts. Glucose utilization is decreased in type 1 diabetes, and fatty acid oxidation dominates for energy production at the expense of an increase in oxygen requirement. The objective of this study was to examine the effect of chronic treatment with trimetazidine (TMZ) on cardiac mechanical function and fatty acid oxidation in streptozocin (STZ)-diabetic rats. Spontaneously beating hearts from male Sprague-Dawley rats were subjected to a 60-minute aerobic perfusion period with a recirculating Krebs-Henseleit solution containing 11 mmol/L glucose, 100 muU/mL insulin, and 0.8 mmol/L palmitate prebound to 3% bovine serum albumin (BSA). Mechanical function of the hearts, as cardiac output x heart rate (in (mL/min).(beats/min).10-2), was deteriorated in diabetic (73 +/- 4) and TMZ-treated diabetic (61 +/- 7) groups compared with control (119 +/- 3) and TMZ-treated controls (131 +/- 6). TMZ treatment increased coronary flow in TMZ-treated control (23 +/- 1 mL/min) hearts compared with untreated controls (18 +/- 1 mL/min). The mRNA expression of 3-ketoacyl-CoA thiolase (3-KAT) was increased in diabetic hearts. The inhibitory effect of TMZ on fatty acid oxidation was not detected at 0.8 mmol/L palmitate in the perfusate. Addition of 1 mumol/L TMZ 30 min into the perfusion did not affect fatty acid oxidation rates, cardiac work, or coronary flow. Our results suggest that higher expression of 3-KAT in diabetic rats might require increased concentrations of TMZ for the inhibitory effect on fatty acid oxidation. A detailed kinetic analysis of 3-KAT using different concentrations of fatty acid will determine the fatty acid inhibitory concentration of TMZ in diabetic state where plasma fatty acid levels are increased.  相似文献   

16.
Dual action of adiponectin on insulin secretion in insulin-resistant mice   总被引:13,自引:0,他引:13  
Adiponectin is secreted by adipocytes and has been implicated as a mediator of insulin sensitivity. In this study, the acute effects of adiponectin on islets isolated from normal or diet-induced insulin resistant mice were examined. In normal islets, adiponectin (5 microg/ml) had no significant effect on insulin secretion. In contrast, in islets from mice rendered insulin resistant by high-fat feeding, adiponectin inhibited insulin secretion at 2.8 mM (P < 0.01) but augmented insulin secretion at 16.7 mM glucose (P < 0.05). The augmentation of glucose-stimulated insulin secretion by adiponectin was accompanied by increased glucose oxidation (P < 0.005), but without any significant effect on palmitate oxidation or the islet ATP/ADP ratio. Furthermore, RT-PCR revealed the expression of the adiponectin receptor AdipoR1 mRNA in mouse islets, however, with no difference in the degree of expression level between the two feeding groups. The results thus uncover a potential dual role for adiponectin to modify insulin secretion in insulin resistance.  相似文献   

17.
Between 1 and 7 days of life, the newborn rabbit heart shifts from predominantly using carbohydrates to predominantly using fatty acids as an energy substrate. We therefore used isolated working hearts from 1- or 7-day-old rabbits to determine the effects of fatty acids on myocardial glucose use and the ability of hearts to recover following various periods of transient no-flow ischemia. One-day-old hearts were perfused via the inferior vena cava and ejected buffer through the cannulated aorta and pulmonary artery. Seven-day-old hearts were perfused via the left atrium and ejected buffer through the cannulated aorta. To measure glucose use, hearts were perfused with 11 mM [3H, 14C]glucose, 3% albumin, and 500 microU insulin/mL, in the presence or absence of 0.4 mM palmitate. In the absence of fatty acids, glycolytic rates were similar in 1- and 7-day-old hearts, whereas glucose oxidation rates were 5 times greater in 7-day-old hearts. Palmitate did not have any major effects on overall glucose use in 1-day-old hearts, but did markedly inhibit glycolysis and glucose oxidation in 7-day-old hearts. A series of hearts were also subjected to periods (25-60 min) of no-flow ischemia, followed by 30 min of aerobic reperfusion. In the absence of palmitate, 1-day-old hearts subjected to ischemic periods of up to 60 min recovered some degree of mechanical function during reperfusion, whereas 7-day-old rabbit hearts failed to recover if hearts were subjected to ischemic periods of 35 min or longer.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Insulin decreases human adiponectin plasma levels.   总被引:6,自引:0,他引:6  
Insulin resistance and hyperinsulinemia are known atherosclerosis risk factors. The association between adiponectin plasma levels and obesity, insulinemia, and atherosclerosis has been shown. Thus, adiponectin may be a link between hyperinsulinemia and vascular disease. In vitro data demonstrated a reduction of adiponectin expression by insulin. However, it is still unclear whether insulin regulates adiponectinemia in vivo in humans. Five healthy male volunteers were studied. Circulating adiponectin levels were determined before and during hyperinsulinemic euglycemic clamp. Adiponectin was measured by radioimmunoassay. Hyperinsulinemia (85.0 +/- 33.2 at baseline vs. 482.8 +/- 64.4 pmol/l during steady state; p < 0.01) was achieved using a euglycemic hyperinsulinemic clamp, keeping blood glucose levels basically unchanged during the intervention (4.6 +/- 0.14 vs. 4.37 +/- 0.15 mmol/l, respectively; ns). We found a significant decrease of adiponectin plasma levels during the steady state of hyperinsulinemic euglycemic clamp (26.7 +/- 3.5 micro g/ml) compared to baseline levels (30.4 +/- 5 micro g/ml; p < 0.05). Hyperinsulinemia caused a significant decrease of adiponectin plasma levels under euglycemic conditions. Considering existing data about adiponectin dependent effects, hypoadiponectinemia might at least partly be a link between hyperinsulinemia and vascular disease in metabolic syndrome.  相似文献   

19.
Adiponectin is a novel adipocytokine negatively correlated with parameters of the metabolic syndrome, such as body mass index (BMI), body fat mass (BFM), and circulating insulin levels. Furthermore, metabolic actions directly on the liver have been described. The aim of the present study was to characterize circulating adiponectin levels, hepatic turnover, and the association of adiponectin with key parameters of hepatic as well as systemic metabolism in cirrhosis, a catabolic disease. Circulating adiponectin levels and hepatic turnover were investigated in 20 patients with advanced cirrhosis. Hepatic hemodynamics [portal pressure, liver blood flow, hepatic vascular resistance, indocyanine green (ICG) half-life], body composition, resting energy expenditure, hepatic free fatty acids (FFA) and glucose turnover, and circulating levels of hormones (catecholamines, insulin, glucagon) and proinflammatory cytokines (IL-1beta, TNF-alpha, IL-6) were also assessed. Circulating adiponectin increased dependently on the clinical stage in cirrhosis compared with controls (15.2 +/- 1.7 vs. 8.2 +/- 1.1 microg/ml, respectively, P < 0.01), whereas hepatic extraction decreased. Adiponectin was negatively correlated with parameters of hepatic protein synthesis (prothrombin time: r = -0.62, P = 0.003; albumin: r = -0.72, P < 0.001) but not with transaminases or parameters of lipid metabolism. In addition, circulating adiponectin increased with portal pressure (r = 0.67, P = 0.003), hepatic vascular resistance (r = 0.60, P = 0.008), and effective hepatic blood flow (ICG half-life: r = 0.69, P = 0.001). Adiponectin in cirrhosis was not correlated with BMI, BFM, parameters of energy metabolism, insulin levels, hepatic FFA and glucose turnover, and circulating proinflammatory cytokines. These results demonstrate that 1) adiponectin plasma levels in cirrhosis are significantly elevated, 2) the liver is a major source of adiponectin extraction, and 3) adiponectin levels in cirrhosis do not correlate with parameters of body composition or metabolism but exclusively with reduced liver function and altered hepatic hemodynamics.  相似文献   

20.
Fatty acid CoA ligase (AMP) (EC 6.2.1.3) specific activity was increased approximately 2-fold in microsomes prepared from isolated rat fat cells incubated with 400 microunits of insulin/ml (2.9 nM) for 45 to 60 min compared to paired controls using an assay based on the conversion of [3H]oleic acid to [3H]oleoyl-CoA. Similar insulin-dependent increases in microsomal fatty acid CoA ligase specific activities were observed using an assay based on the conversion of [3H]CoA to fatty acyl-[3H]CoA. Fatty acid CoA ligase activity was predominately (about 80%) associated with the microsomal fraction. The insulin-dependent increase in microsomal fatty acid CoA ligase specific activity was maximal in 2 to 5 min at 400 microunits/ml. At 10 min, 80 to 100 microunits of insulin/ml caused a maximal increase in fatty acid CoA ligase specific activity. Similar apparent Km values for ATP, CoA, and fatty acid were observed for fatty acid CoA ligase activity in microsomal preparations from control and insulin-exposed cells. These data suggest that fatty acid CoA ligase activity is regulated in adipose tissue by insulin. Such regulation may serve to promote the capture of fatty acid and thereby, triacylglycerol synthesis in adipose tissue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号