首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
2.
This paper describes the effects of increased expression of the cell division genes ftsZ, ftsQ, and ssgA on the development of both solid- and liquid-grown mycelium of Streptomyces coelicolor and Streptomyces lividans. Over-expression of ftsZ in S. coelicolor M145 inhibited aerial mycelium formation and blocked sporulation. Such deficient sporulation was also observed for the ftsZ mutant. Over-expression of ftsZ also inhibited morphological differentiation in S. lividans 1326, although aerial mycelium formation was less reduced. Furthermore, antibiotic production was increased in both strains, and in particular the otherwise dormant actinorhodin biosynthesis cluster of S. lividans was activated in liquid- and solid-grown cultures. No significant alterations were observed when the gene dosage of ftsQ was increased. Analysis by transmission electron microscopy of an S. coelicolor strain over-expressing ssgA showed that septum formation had strongly increased in comparison to wild-type S. coelicolor, showing that SsgA clearly influences Streptomyces cell division. The morphology of the hyphae was affected such that irregular septa were produced with a significantly wider diameter, thereby forming spore-like compartments. This suggests that ssgA can induce a process similar to submerged sporulation in Streptomyces strains that otherwise fail to do so. A working model is proposed for the regulation of septum formation and of submerged sporulation.  相似文献   

3.
In recent years much attention has been given to the identification and characterisation of the key elements of the secretory machinery of Streptomyces lividans, a non-pathogenic filamentous Gram-positive soil bacterium, whose metabolism is relatively well characterised and capable of secreting large amounts of proteins when grown in laboratory conditions. The relevance of S. lividans from a commercial standpoint is due to its potential usefulness for the overproduction of secretory homologous and heterologous proteins of interest. Therefore, this review focuses on the knowledge already obtained on the S. lividans secretion pathways.  相似文献   

4.
The level of resistance to antibiotics of various chemical structure in actinobacteria of the genus Streptomyces is shown to be regulated by Ca2+ ions. The inhibitors of Ca2+/calmodulin and Ca2+/phospholipid-dependent serine/threonine protein kinases (STPK) are found to reduce antibiotic resistance of actinobacteria. The effect of Ca2+-dependent phosphorylation on the activity of the enzymatic aminoglycoside phosphotransferase system protecting actinobacteria from aminoglycoside antibiotics was studied. It is shown that inhibitors of Ca2+/calmodulin and Ca2+/phospholipid-dependent STPK reduced the Ca2+-induced kanamycin resistance in Streptomyces lividans cells transformed by a hybrid plasmid which contained the aminoglycoside phosphotransferase VIII (APHVIII) gene. In S. coelicolor A3(2) cells, the protein kinase PK25 responsible for APHVIII phosphorylation in vitro was identified. It is suggested that STPK play a major role in the regulation of antibiotic resistance in actinobacteria.  相似文献   

5.
Huang B  Lin W  Cheung PC  Wu J 《Current microbiology》2011,62(4):1160-1167
Autolysis is an important physiological process found in fungal cultivation. However, there is hitherto no report on the autolysis of Pleurotus tuber-regium. We have investigated the enzymes secreted by temperature-induced (40°C as treatment versus 10°C as control) autolysis of the mycelium of P. tuber-regium grown in submerged cultivation. A comparison between the intracellular proteins (inside the mycelium) and the extracellular proteins (in the culture medium) of the treatment and control by proteomic analysis involving 2D PAGE and MALDI–TOF–MS was made. Twenty-two up-regulated protein spots were detected and eight proteins were identified. They included proteasome which participates in the ubiquitin–proteasome pathway; β-1,3-glucanosyltransferase and tubulin which are involved in the renewal and repair of cell wall; protease and endoglucanase which promote the natural degradation of cell wall and cytoplasm; 14-3-3 protein which takes part in cell signal transduction; and two putative proteins presumably relate to the autolysis process. These identified proteins suggest partially the metabolic processes of the autolysis in the P. tuber-regium mycelium.  相似文献   

6.
The baculovirus expression vector system (BEVS) is a widely used platform for the production of recombinant eukaryotic proteins. However, the BEVS has limitations in comparison to other higher eukaryotic expression systems. First, the insect cell lines used in the BEVS cannot produce glycoproteins with complex‐type N‐glycosylation patterns. Second, protein production is limited as cells die and lyse in response to baculovirus infection. To delay cell death and lysis, we transformed several insect cell lines with an expression plasmid harboring a vankyrin gene (P‐vank‐1), which encodes an anti‐apoptotic protein. Specifically, we transformed Sf9 cells, Trichoplusia ni High FiveTM cells, and SfSWT‐4 cells, which can produce glycoproteins with complex‐type N‐glycosylation patterns. The latter was included with the aim to increase production of glycoproteins with complex N‐glycans, thereby overcoming the two aforementioned limitations of the BEVS. To further increase vankyrin expression levels and further delay cell death, we also modified baculovirus vectors with the P‐vank‐1 gene. We found that cell lysis was delayed and recombinant glycoprotein yield increased when SfSWT‐4 cells were infected with a vankyrin‐encoding baculovirus. A synergistic effect in elevated levels of recombinant protein production was observed when vankyrin‐expressing cells were combined with a vankyrin‐encoding baculovirus. These effects were observed with various model proteins including medically relevant therapeutic proteins. In summary, we found that cell lysis could be delayed and recombinant protein yields could be increased by using cell lines constitutively expressing vankyrin or vankyrin‐encoding baculovirus vectors. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:1496–1507, 2017  相似文献   

7.
pGTR760 and pGTR761, two new shuttle vectors, withmultiple cloning sites and capable of conjugal transfer from E. coli to Streptomyces sp. were constructed. The poly-3-hydroxybutyrate (PHB) biosynthetic polycistron from Ralstonia eutropha was cloned into the pGTR760 vector to derive the pCABRe plasmid. The pCABRe plasmid was conjugally transferred from E. coli S17-1 to Streptomyces lividans TK64. Fluorescence microscopy of the recombinant and the untransformed S. lividans TK64 revealed presence of polyhydroxyalkanoates (PHAs) in both cell types. GC/GC-MS analysis revealed the accumulated polymer to be polyhydroxyoctanoate (PHO). While the untransformed S. lividans cells accumulate 3.5% PHO of cell dry wt, the recombinant cells accumulate 8% PHO of the cell dry wt. The transformation of S. lividans, however, resulted in slower growth rate, delayed sporulation and impaired pigment formation. Scanning electron microscope analysis revealed broken mycelia probably due to release of accumulated PHO granules from the cells.  相似文献   

8.
The rolling circle (RC) mechanism of DNA replication generating single-stranded DNA (ssDNA) intermediates is common in various high-copy circular plasmids in Streptomyces, and the ssDNA released after leading strand synthesis is converted to its double-stranded form (dsDNA) by the host proteins. The in vivo and in vitro lagging strand syntheses from ssDNA replicative intermediates of RC plasmid pSN22 in Streptomyces lividans was characterized. The presence or absence of the single-strand origin (sso), the replication initiation site of lagging strand synthesis, did not significantly affect the copy numbers of pSN22 derivatives. In vivo lagging strand synthesis was not affected by the rifampicin inhibition of S. lividans RNA polymerase. Likewise, in vitro lagging strand synthesis using cell-free extracts revealedsso-independent, rifampicin-resistant lagging strand synthesis in S. lividans. Although all four dNTPs are usually required for the initiation of such synthesis, the presence of only one NTP was sufficient to carry outlagging strand synthesis in vitro. Interestingly, the cell-free extract of exponential-phase cells required less ATP than that of stationary-phase cells. These results reveal a predominant RNA polymerase-independent priming system in S. lividans that may be a result of the stabilization of RC plasmids lacking sso in S. lividans.  相似文献   

9.
Mycobacterium tuberculosis (M. tb) has a complex lifestyle in different environments and involving several developmental stages. The success of M. tb results from its remarkable capacity to survive within the infected host, where it can persist in a non‐replicating state for several decades. The survival strategies developed by M. tb are linked to the presence of an unusual cell envelope. However, little is known regarding its capacity to modulate and adapt production of cell wall components in response to environmental conditions or to changes in cell shape and cell division. Signal sensing leading to cellular responses must be tightly regulated to allow survival under variable conditions. Although prokaryotes generally control their signal transduction processes through two‐component systems, signalling through Ser/Thr phosphorylation has recently emerged as a critical regulatory mechanism in bacteria. The genome of M. tb possesses a large family of eukaryotic‐like Ser/Thr protein kinases (STPKs). The physiological roles of several mycobacterial STPK substrates are connected to cell shape/division and cell envelope biosynthesis. Although these regulatory mechanisms have mostly been studied in Mycobacterium, Ser/Thr phosphorylation appears also to regulate cell division and peptidoglycan synthesis in Corynebacterium and Streptomyces. This review focuses on the proteins which have been identified as STPK substrates and involved in the synthesis of major cell envelope components and cell shape/division in actinomycetes. It is also intended to describe how phosphorylation affects the activity of peptidoglycan biosynthetic enzymes or cell division proteins.  相似文献   

10.
A 19-kb plasmid, pNI100, was isolated from Nocardia italica CCRC12359; its replicon was cloned and characterized as having a single open reading frame (ORF) of 1188 bp specifying 396 amino acids (aa). Analyses of the deduced aa sequence of the Rep protein indicated that characteristics of three consensus sequences and a P-loop-like motif in the Rep protein of plasmid pSG5, a conjugative plasmid involving a rolling-circle replication mechanism, were conserved in those of plasmid pNI100. Phenotypically, a pock structure was produced in the regenerated mycelium by introducing pNI100 DNA into the Streptomyces lividans protoplast. This result strongly suggests that pNI100 is a conjugative plasmid and probably replicates by a rolling-circle replication mechanism. By using the replicon of pNI100, a bifunctional plasmid pNI105 that could replicate in both Escherichia coli and S. lividans was constructed and found to be a useful cloning shuttle vector.  相似文献   

11.
In plants, intercellular communication and exchange are highly dependent on cell wall bridging structures between adhering cells, so‐called plasmodesmata (PD). In our previous genetic screen for PD‐deficient Arabidopsis mutants, we described choline transporter‐like 1 (CHER1) being important for PD genesis and maturation. Leaves of cher1 mutant plants have up to 10 times less PD, which do not develop to complex structures. Here we utilize the T‐DNA insertion mutant cher1–4 and report a deep comparative proteomic workflow for the identification of cell‐wall‐embedded PD‐associated proteins. Analyzing triplicates of cell‐wall‐enriched fractions in depth by fractionation and quantitative high‐resolution mass spectrometry, we compared > 5000 proteins obtained from fully developed leaves. Comparative data analysis and subsequent filtering generated a list of 61 proteins being significantly more abundant in Col‐0. This list was enriched for previously described PD‐associated proteins. To validate PD association of so far uncharacterized proteins, subcellular localization analyses were carried out by confocal laser‐scanning microscopy. This study confirmed the association of PD for three out of four selected candidates, indicating that the comparative approach indeed allowed identification of so far undescribed PD‐associated proteins. Performing comparative cell wall proteomics of Nicotiana benthamiana tissue, we observed an increase in abundance of these three selected candidates during sink to source transition. Taken together, our comparative proteomic approach revealed a valuable data set of potential PD‐associated proteins, which can be used as a resource to unravel the molecular composition of complex PD and to investigate their function in cell‐to‐cell communication.  相似文献   

12.
Four defective (AFM) mutants of Paenibacillus sp. HKA-15 that no longer produced the peptide antifungal metabolites were developed through ethyl methane sulfonate (EMS) mutagenesis and used for in vivo experimentation. Reduced percentage of seed germination by mutants DM1 and DM2 (22.5% and 25%, respectively) and a high percent of disease incidence (69.3% and 67%, respectively) compared to wild-strain HKA-15 (80% seed germination and 27% disease incidence) indirectly indicated the role of peptide metabolite on disease suppression. Plants treated with AFM clones showed stunted growth and the presence of pepperlike microsclerotia in the stem tissues. Light and scanning electron microscopic studies clearly showed the effect of peptide antibiosis on hyphal morphology. Exposure to crude extracts of antibiotics produced abnormal contraction of fungal cytoplasm, granulation, and fragmentation of hyphal mycelia and cell lysis. The presence of bacterial cells in the lumen of degrading fungal mycelium suggested a direct involvement of Paenibacillus sp. HKA-15 in the lysis of Rhizoctonia bataticola.  相似文献   

13.
The majority of bacterial proteins are exported across the cytoplasmic membrane via the Sec pathway, but also the more recently discovered twin-arginine translocation (Tat) route seems to play an important role for protein secretion in Streptomyces lividans in whose genome tatA, tatB and tatC have been identified. In the present work we showed that simultaneous overproduction of TatABC improved the Tat-dependent secretion capacity as could be concluded from the increased amount of secreted xylanase C, an exclusive Tat-dependent substrate. This result demonstrates that next to the availability of energy to drive secretion, also the number of translocases can be rate-limiting for Tat-dependent secretion. On the other hand, tatABC overexpression was found to diminish secretion of the Sec-dependent proteins xylanase B and subtilisin inhibitor in S. lividans. These results reveal cross-talk between both pathways in S. lividans.  相似文献   

14.

Background  

Streptokinase (SK) is a potent plasminogen activator with widespread clinical use as a thrombolytic agent. It is naturally secreted by several strains of beta-haemolytic streptococci. The low yields obtained in SK production, lack of developed gene transfer methodology and the pathogenesis of its natural host have been the principal reasons to search for a recombinant source for this important therapeutic protein. We report here the expression and secretion of SK by the Gram-positive bacterium Streptomyces lividans. The structural gene encoding SK was fused to the Streptomyces venezuelae CBS762.70 subtilisin inhibitor (vsi) signal sequence or to the Streptomyces lividans xylanase C (xlnC) signal sequence. The native Vsi protein is translocated via the Sec pathway while the native XlnC protein uses the twin-arginine translocation (Tat) pathway.  相似文献   

15.
The 2-deoxystreptamine and paromamine are two key intermediates in kanamycin biosynthesis. In the present study, pSK-2 and pSK-7 recombinant plasmids were constructed with two combinations of genes: kanABK and kanABKF and kacA respectively from kanamycin producer Streptomyces kanamyceticus ATCC12853. These plasmids were heterologously expressed into Streptomyces lividans TK24 independently and generated two recombinant strains named S. lividans Sk-2/SL and S. lividans SK-7/SL, respectively. ESI/ MS and ESI-LC/MS analysis of the metabolite from S. lividans SK-2/SL showed that the compound had a molecular mass of 163 [M + H]+, which corresponds to that of 2-deoxystreptamine. ESI/MS and MS/MS analysis of metabolites from S. lividans SK-7/SL demonstrated the production of paromamine with a molecular mass of 324 [M + H]+. In this study, we report the production of paromamine in a heterologous host for the first time. This study will evoke to explore complete biosynthetic pathways of kanamycin and related aminoglycoside antibiotics.  相似文献   

16.

Background

Misfolded proteins accumulating outside the bacterial cytoplasmic membrane can interfere with the secretory machinery, hence the existence of quality factors to eliminate these misfolded proteins is of capital importance in bacteria that are efficient producers of secretory proteins. These bacteria normally use a specific two-component system to respond to the stress produced by the accumulation of the misfolded proteins, by activating the expression of HtrA-like proteases to specifically eliminate the incorrectly folded proteins.

Methodology/Principal Findings

Overproduction of alpha-amylase in S. lividans causing secretion stress permitted the identification of a two-component system (SCO4156-SCO4155) that regulates three HtrA-like proteases which appear to be involved in secretion stress response. Mutants in each of the genes forming part of the two-genes operon that encodes the sensor and regulator protein components accumulated misfolded proteins outside the cell, strongly suggesting the involvement of this two-component system in the S. lividans secretion stress response.

Conclusions/Significance

To our knowledge this is the first time that a specific secretion stress response two-component system is found to control the expression of three HtrA-like protease genes in S. lividans, a bacterium that has been repeatedly used as a host for the synthesis of homologous and heterologous secretory proteins of industrial application.  相似文献   

17.
AfsR2, originally identified fromStreptomyces lividans, is a global regulatory protein which stimulates antibiotic biosynthesis. Through its stable chromosomal integration, the high level of gene expression ofafsR2 significantly induced antibiotic production as well as the sporulation ofS. lividans, implying the presence of yet-uncharacterized AfsR2-target proteins. To identify and evaluate the putative AfsR2-target proteins involved in antibiotic regulation, the proteomics-driven approach was applied to the wild-typeS. lividans and theafsR2-integrated actinorhodin overproducing strain. The 2D gel-electrophoresis gave approximately 340 protein spots showing different protein expression patterns between these twoS. lividans strains. Further MALDI-TOF analysis revealed several AfsR2-target proteins, including glyceraldehyde-3-phosphate dehydrogenase, putative phosphate transport system regulator, guanosine pentaphosphate synthetase/polyribonucleotide nucleotidyltransferase, and superoxide dismutase, which suggests that the AfsR2 should be a pleiotropic regulatory protein which controls differential expressions of various kinds of genes inStreptomyces species.  相似文献   

18.
Genome sequencing for many important fungi has begun during recent years; however, there is still some deficiency in proteome profiling of aspergilli. To obtain a comprehensive overview of proteins and their expression, a proteomic approach based on 2D gel electrophoresis and MALDI-TOF/TOF mass spectrometry was used to investigate A. ochraceus. The cell walls of fungi are exceptionally resistant to destruction, therefore two lysis protocols were tested: (1) lysis via manual grinding using liquid nitrogen, and (2) mechanical lysis via rapid agitation with glass beads using MagNalyser. Mechanical grinding with mortar and pestle using liquid nitrogen was found to be a more efficient extraction method for our purpose, resulting in extracts with higher protein content and a clear band pattern in SDS-PAGE. Two-dimensional electrophoresis gave a complex spot pattern comprising proteins of a broad range of isoelectric points and molecular masses. The most abundant spots were subjected to mass spectrometric analysis. We could identify 31 spots representing 26 proteins, most of them involved in metabolic processes and response to stress. Seventeen spots were identified by de novo sequencing due to a lack of DNA and protein database sequences of A. ochraceus. The proteins identified in our study have been reported for the first time in A. ochraceus and this represents the first proteomic approach with identification of major proteins, when the fungus was grown under submerged culture.  相似文献   

19.
The structural gene for phospholipase D (PLD) of an actinomycete, Streptoverticillium cinnamoneum, together with its promoter region was introduced into Streptomyces lividans using a shuttle vector—pUC702—for Escherichia coli and S. lividans. The transformant was found to secrete a large amount of PLD (about 2.0×104 U/l, 42 mg/l) when cultured in a jar fermentor. Both an initial glucose concentration of 17.5 g/l and the feeding of carbon and nitrogen sources are effective for efficient secretion of PLD; under these culture conditions, the amount of PLD secreted reached a maximum level (about 5.5×104 U/l, 118 mg/l) after about 60 h. In contrast to the original producer, Stv. cinnamoneum, which secretes only a small amount of PLD (about 1.1×103 U/l, 2 mg/l) along with other extracellular proteins, this heterologous expression system is markedly more efficient in production of secretory PLD.  相似文献   

20.
Copper has an important role in the life cycle of many streptomycetes, stimulating the developmental switch between vegetative mycelium and aerial hyphae concomitant with the production of antibiotics. In streptomycetes, a gene encoding for a putative Sco-like protein has been identified and is part of an operon that contains two other genes predicted to handle cellular copper. We report on the Sco-like protein from Streptomyces lividans (ScoSl) and present a series of experiments that firmly establish a role for ScoSl as a copper metallochaperone as opposed to a role as a thiol-disulphide reductase that has been assigned to other bacterial Sco proteins. Under low copper concentrations, a Δsco mutant in S. lividans displays two phenotypes; the development switch between vegetative mycelium and aerial hyphae stalls and cytochrome c oxidase (CcO) activity is significantly decreased. At elevated copper levels, the development and CcO activity in the Δsco mutant are restored to wild-type levels and are thus independent of ScoSl. A CcO knockout reveals that morphological development is independent of CcO activity leading us to suggest that ScoSl has at least two targets in S. lividans. We establish that one ScoSl target is the dinuclear CuA domain of CcO and it is the cupric form of ScoSl that is functionally active. The mechanism of cupric ion capture by ScoSl has been investigated, and an important role for a conserved His residue is identified.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号