首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The constant-rate fed-batch production of the polygalacturonic acid bioflocculant REA-11 was studied. A controlled sucrose-feeding strategy resulted in a slight improvement in biomass and a 7% reduction in flocculating activity compared with the batch process. When fed with a 3 g l−1 urea solution, the flocculating activity was enhanced to 720 U ml−1 in 36 h. High cell density (2.12 g l−1) and flocculating activity (820 U ml−1) were obtained in a 10-l fermentor by feeding with a sucrose-urea solution, with values of nearly two times and 50% higher than those of the batch process, respectively. Moreover, the residual sucrose declined to 2.4 g l−1, and residual urea decreased to 0.03 g l−1. Even higher flocculating activity of 920 U ml−1 and biomass of 3.26 g l−1 were obtained by feeding with a sucrose-urea solution in a pilot scale fermentation process, indicating the potential industrial utility of this constant-rate feeding strategy in bioflocculant production by Corynebacterium glutamicum.  相似文献   

3.
4.
Representative and valid cytoplasmic concentrations are essential for ensuring the significance of results in the field of metabolome analysis. One of the most crucial points in this respect is the sampling itself. A rapid and sudden stopping of the metabolism on a timescale that is much faster than the conversion rates of investigated metabolites is worthwhile. This can be achieved by applying of cold methanol quenching combined with reproducible, fast, and automated sampling. Unfortunately, quenching the metabolism by a sharp temperature shift leads to what is known as cold shock or the cell-leakage effect. In the present work, we applied a microstructure heat exchanger to analyze the cold shock effect using Corynebacterium glutamicum as a model microorganism. Using this apparatus together with a silicon pipe, it was possible to assay the leakage effect on a timescale starting at 1 s after cooling cell suspension. The high turnover rates not only require a rapid quenching technique, but also the correct application. Moreover, we succeeded in showing that even when the required appropriate setup of methanol quenching is not used, the metabolism is not stopped within the required timescale. By applying robust techniques like rapid sampling in combination with reproducible sample processing, we ensured fast and reliable metabolic inactivation during all steps.  相似文献   

5.
6.
We analyzed 1,2-propanediol (1,2-PD) production in metabolically engineered Corynebacterium glutamicum. Wild-type C. glutamicum produced 93 μM 1,2-PD after 132 h incubation under aerobic conditions. No gene encoding the methylglyoxal synthase (MGS) which catalyzes the first step of 1,2-PD synthesis from the glycolytic pathway was detected on the C. glutamicum genome, but several genes annotated as encoding putative aldo-keto reductases (AKRs) were present. AKR functions as a methylglyoxal reductase in the 1,2-PD synthesis pathway. Expressing Escherichia coli mgs gene in C. glutamicum increased 1,2-PD yield 100-fold, suggesting that wild-type C. glutamicum carries the genes downstream of MGS in the 1,2-PD synthesis pathway. Furthermore, simultaneous overexpression of mgs and cgR_2242, one of the genes annotated as AKRs, enhanced 1,2-PD production to 24 mM. This work establishes that 1,2-PD synthesis by C. glutamicum, previously unknown, is possible.  相似文献   

7.
There are three most important bacterial causative agents of serious infections that could be misused for warfare purposes: Bacillus anthracis (the causative agent of anthrax) is the most frequently mentioned one; however, Fracisella tularensis (causing tularemia) and Yersinia pestis (the causative agent of plague) are further bacterial agents enlisted by Centers for Disease Control and Prevention into the category A of potential biological weapons. This review intends to summarize basic information about these bacterial agents. Military aspects of their pathogenesis and the detection techniques suitable for field use are discussed.  相似文献   

8.
Interaction of Bdellovibrio bacteriovorus 100NCJB with bacteria Campylobacter jejuni (strains 1, 2, 3, 4, and 5) and Helicobacter pylori, strain TX30a, was confirmed. The results indicate that lytic activity of bdellovibrios both in liquid media and cells attached to a surface was observed. The potential use of the antimicrobial activity of predatory bacteria for environmental bioprotection and public health is discussed.  相似文献   

9.
10.
Putrescine is widely used in the industrial production of bioplastics, pharmaceuticals, agrochemicals, and surfactants. Because the highest titer of putrescine is much lower than that of its precursor l-ornithine reported in microorganisms to date, further work is needed to increase putrescine production in Corynebacterium glutamicum. We first compared 7 ornithine decarboxylase genes and found that the Enterobacter cloacae ornithine decarboxylase gene speC1 was most suitable for putrescine production in C. glutamicum. Increasing NADPH availability and blocking putrescine oxidation and acetylation were chosen as targets for metabolic engineering. The putrescine producer C. glutamicum PUT4 was first constructed by deleting puo, butA and snaA genes, and replacing the fabG gene with E. cloacae speC1. After adaptive evolution with C. glutamicum PUT4, the evolved strain C. glutamicum PUT-ALE, which produced an 96% higher amount of putrescine compared to the parent strain, was obtained. The whole genome resequencing indicates that the SNPs located in the odhA coding region may be associated with putrescine production. The comparative proteomic analysis reveals that the pentose phosphate and anaplerotic pathway, the glyoxylate cycle, and the ornithine biosynthetic pathway were upregulated in the evolved strain C. glutamicum PUT-ALE. The aspartate family, aromatic, and branched chain amino acid and fatty acid biosynthetic pathways were also observed to be downregulated in C. glutamicum PUT-ALE. Reducing OdhA activity by replacing the odhA native start codon GTG with TTG and overexpression of cgmA or pyc458 further improved putrescine production. Repressing the carB, ilvH, ilvB and aroE expression via CRISPRi also increased putrescine production by 5, 9, 16 and 19%, respectively.  相似文献   

11.
Based on population analysis of the DRB1, DQA1, DQB1 and TNFA allele frequency distribution patterns, regional features of immunogenetic structure of the population of West Siberia were investigated. Statistically significant linkage disequilibrium within the HLA class II region, as well as between the TNFA and DRB1, DQA1, and DQB1 was demonstrated. Population frequency distribution patterns of two- and multilocus haplotypes were examined.  相似文献   

12.
13.
The intron sequence of chloroplast rpS16 and the secondary structure of its pre-mRNA were characterized for the first time in 26 Allium sativum accessions of different ecologo-geographical origins and seven related Allium species. The boundaries and main stem-loop consensus sequences were identified for all six domains of the intron. Polymorphism was estimated for the total intron and its regions. The structural regions of the rpS16 intron proved to be heterogeneous for mutation rate and spectrum. Mutations were most abundant in domains II and IV, and transition predominated in domains I, III, V, and VI. In addition to structural elements and motifs typical for group IIB introns, several Allium-specific micro- and macrostructural mutations were revealed. A 290-bp deletion involving domains III and IV and part of domain V was observed in A. altaicum, A. fistulosum, and A. schoenoprasum. Several indels and nucleotide substitutions were found to cause a deviation of the pre-mRNA secondary structure from the consensus model of group II introns.  相似文献   

14.
15.
Osmotic stress constitutes a major bacterial stress factor in the soil and during industrial fermentation. In this paper, we quantified the metabolic response, in terms of metabolic flux redistribution, of a lysine-overproducing strain of Corynebacterium glutamicum grown under continuous culture, to gradually increasing osmolality. Oxygen and carbon dioxide evolution rates, and the changes in concentration of extracellular, as well as intracellular, metabolites were measured throughout the osmotic gradient. The metabolic fluxes were estimated from these measurements and from the mass balance constraints at each metabolite-node of the assumed metabolic reaction network. Our results show that formation rates of compatible solutes--trehalose first and proline at a later stage of the gradient--increased with osmotic stress to equilibrate the external osmotic pressure. Estimated flux distributions indicate that the observed increase in the glucose specific uptake rate with osmotic stress is channeled through the main energy generating pathways-- glycolysis and the tricarboxylic acid cycle--while the flux through the pentose phosphate pathway remains constant throughout the gradient. This results in a significant increase in the net specific ATP production rate, which may possibly be used to support the higher energy requirements required for cellular maintenance at high osmolalities. Finally, nodal analysis confirmed that the PEP/pyruvate node is essentially rigid and that the glucose-6-phosphate, oxaloacetate and alpha-ketoglutarate nodes are flexible and therefore adaptable to changes in osmotic pressure in C. glutamicum.  相似文献   

16.
17.
To overexpress the chitosanase gene (csn) in F. solani, a vector based on pCAMBIA 1300 was constructed. The csn gene, which is under control of the Aspergillus nidulans gpdA promoter and A. nidulans trpC terminator, was introduced back into the F. solani genome by Agrobacterium tumefaciens-mediated transformation, and the herbicide-resistance gene bar from Streptomyces hygroscopicus was used as the selection marker. Transformants which showed a significant increase in chitosanase production (~2.1-fold than control) were obtained. Southern blot analysis indicated that most transformants had a single-copy T-DNA integration.  相似文献   

18.
Pilobolus crystallinus shows unique photoresponses at various growing stages. cDNAs for putative photoreceptors were cloned from this fungus. Three genes named pcmada1, pcmada2, and pcmada3 were identified from the PCR fragments, and amplified with degenerated primers for the LOV domain, which is conserved in many blue-light receptors. Deduced amino acid sequences for PCMADA1, PCMADA2, and PCMADA3 had one light-oxygen-voltage (LOV)-sensing and two PER-ARNT-SIM (PAS) domains. A zinc finger DNA-binding motif was conserved in the C-terminals of PCMADA1 and PCMADA3. However, PCMADA2 lacked the zinc finger motif. Expression of pcmada1 was suppressed by blue light whereas that of pcmada3 was promoted by blue-light irradiation.  相似文献   

19.
The present study was designed to expand genetic knowledge of myo -inositol (MI) metabolism in Lactobacillus casei. Twenty-four L. casei isolates of dairy origin were tested for the presence of iol cluster. PCR screening revealed eight strains encoded functions involved in MI utilization, of which one strain was able to use MI as carbon source. To gain a deeper understanding of the function of iol genes, four of the eight observed iol clusters were subjected to the full sequencing procedure. The results showed that the iol cluster was not a common feature among dairy L. casei strains. In addition, the four iol clusters were highly similar to one another in terms of sequence similarity and operon architecture. However, abundant polymorphisms that comprised a majority of synonymous mutations were detected throughout the full sequences. Three of them distributed among iolB, iolC, and iolT genes were found in linkage to MI-negative phenotype. Compared with other bacterial iol clusters, the iol cluster of L. casei showed a high similarity with that of Bacillus subtilis.  相似文献   

20.
The CONSTANS (CO) gene is a key regulator of the response to photoperiod in the model plant Arabidopsis thaliana, and its homologues are present in many plant species. We describe here the isolation of the CO homologue for zinc finger protein gene GmCOL10 (Glycine max CONSTANS-Like 10) from the soybean cultivar Kennong18. Sequence comparisons showed that the closest A. thaliana gene to GmCOL10 is COL5. The expression of GmCOL10 was regulated in a circadian manner, especially under short-day conditions. The expression of GmCOL10 was concentrated in vegetative organs, and in particular in the unifoliolates and cotyledons. An analysis of subcellular localization found GmCOL10 in the nucleus. Our data suggested that GmCOL10 was not related to the photoperiodic pathway of floral transition as Arabidopsis CO does.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号