首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Normal cell growth and division in the yeast Saccharomyces cerevisiae involve dramatic and frequent changes in the organization of the actin cytoskeleton. Previous studies have suggested that the reorganization of the actin cytoskeleton in accordance with cell cycle progression is controlled, directly or indirectly, by the cyclin-dependent kinase Cdc28. Here we report that by isolating rapid-death mutants in the background of the Start-deficient cdc28-4 mutation, the essential yeast gene PAN1, previously thought to encode the yeast poly(A) nuclease, is identified as a new factor required for normal organization of the actin cytoskeleton. We show that at restrictive temperature, the pan1 mutant exhibited abnormal bud growth, failed to maintain a proper distribution of the actin cytoskeleton, was unable to reorganize actin the cytoskeleton during cell cycle, and was defective in cytokinesis. The mutant also displayed a random pattern of budding even at permissive temperature. Ectopic expression of PAN1 by the GAL promoter caused abnormal distribution of the actin cytoskeleton when a single-copy vector was used. Immunofluorescence staining revealed that the Pan1 protein colocalized with the cortical actin patches, suggesting that it may be a filamentous actin-binding protein. The Pan1 protein contains an EF-hand calcium-binding domain, a putative Src homology 3 (SH3)-binding domain, a region similar to the actin cytoskeleton assembly control protein Sla1, and two repeats of a newly identified protein motif known as the EH domain. These findings suggest that Pan1, recently recognized as not responsible for the poly(A) nuclease activity (A. B. Sachs and J. A. Deardorff, erratum, Cell 83:1059, 1995; R. Boeck, S. Tarun, Jr., M. Rieger, J. A. Deardorff, S. Muller-Auer, and A. B. Sachs, J. Biol. Chem. 271:432-438, 1996), plays an important role in the organization of the actin cytoskeleton in S. cerevisiae.  相似文献   

2.
Arp2p is an essential yeast actin-related protein. Disruption of the corresponding ARP2 gene leads to a terminal phenotype characterized by the presence of a single large bud. Thus, Arp2p may be important for a late stage of the cell cycle (Schwob, E., and R.P. Martin, 1992. Nature (Lond.). 355:179-182). We have localized Arp2p by indirect immunofluorescence. Specific peptide antibodies revealed punctate staining under the plasma membrane, which partially colocalizes with actin. Temperature-sensitive arp2 mutations were created by PCR mutagenesis and selected by an ade2/SUP11 sectoring screen. One temperature-sensitive mutant that was characterized, arp2-H330L, was osmosensitive and had an altered actin cytoskeleton at a nonpermissive temperature, suggesting a role of Arp2p in the actin cytoskeleton. Random budding patterns were observed in both haploid and diploid arp2- H330L mutant cells. Endocytosis, as judged by Lucifer yellow uptake, was severely reduced in the mutant, at all temperatures. In addition, genetic interaction was observed between temperature-sensitive alleles arp2-H330L and cdc10-1. CDC10 is a gene encoding a neck filament- associated protein that is necessary for polarized growth and cytokinesis. Overall, the immunolocalization, mutant phenotypes, and genetic interaction suggest that the Arp2 protein is an essential component of the actin cytoskeleton that is involved in membrane growth and polarity, as well as in endocytosis.  相似文献   

3.
Mutations in the budding yeast myosins-I (MYO3 and MYO5) cause defects in the actin cytoskeleton and in the endocytic uptake. Robust evidence also indicates that these proteins induce Arp2/3-dependent actin polymerization. Consistently, we have recently demonstrated, using fluorescence microscopy, that Myo5p is able to induce cytosol-dependent actin polymerization on the surface of Sepharose beads. Strikingly, we now observed that, at short incubation times, Myo5p induced the formation of actin foci that resembled the yeast cortical actin patches, a plasma membrane-associated structure that might be involved in the endocytic uptake. Analysis of the machinery required for the formation of the Myo5p-induced actin patches in vitro demonstrated that the Arp2/3 complex was necessary but not sufficient in the assay. In addition, we found that cofilin was directly involved in the process. Strikingly though, the cofilin requirement seemed to be independent of its ability to disassemble actin filaments and profilin, a protein that closely cooperates with cofilin to maintain a rapid actin filament turnover, was not needed in the assay. In agreement with these observations, we found that like the Arp2/3 complex and the myosins-I, cofilin was essential for the endocytic uptake in vivo, whereas profilin was dispensable.  相似文献   

4.
5.
Macroautophagy is the process of intracellular bulk protein degradation induced by nutrient starvation and is generally considered to be a nonselective degradation of cytosolic enzymes and organelles. However, it remains a possibility that some proteins may be preferentially degraded by autophagy. In this study, we have performed a systematic analysis on the substrate selectivity of autophagy in yeast, Saccharomyces cerevisiae, using two-dimensional PAGE. We performed a differential screen on wild-type and Deltaatg7/apg7 autophagy-deficient cells and found that cytosolic acetaldehyde dehydrogenase (Ald6p) decreased under nitrogen starvation. As assessed by immunoblot, Ald6p was reduced by greater than 82% after 24 h of nitrogen starvation. This reduction was dependent on Atg/Apg proteins and vacuolar proteases but was not dependent on the proteasome or the cytoplasm to vacuole targetting (Cvt) pathway. Using pulse-chase and subcellular fractionation, we have also demonstrated that Ald6p was preferentially transported to vacuoles via autophagosomes. Deltaatg7 Deltaald6 double mutant cells were able to maintain higher rates of viability than Deltaatg7 cells under nitrogen starvation, and Ald6p-overexpressing cells were not able to maintain high rates of viability. Furthermore, the Ald6p(C306S) mutant, which lacks enzymatic activity, had viability rates similar to Deltaald6 cells. Ald6p enzymatic activity may be disadvantageous for survival under nitrogen starvation; therefore, yeast cells may preferentially eliminate Ald6p via autophagy.  相似文献   

6.
Bulk degradation of cytosol and organelles is important for cellular homeostasis under nutrient limitation, cell differentiation and development. This process occurs in a lytic compartment, and autophagy is the major route to the lysosome and/or vacuole. We found that yeast, Saccharomyces cerevisiae, induces autophagy under various starvation conditions. The whole process is essentially the same as macroautophagy in higher eukaryotic cells. However, little is known about the mechanism of autophagy at a molecular level. To elucidate the molecules involved, a genetic approach was carried out and a total of 16 autophagy-defective mutants (apg) were isolated. So far, 14 APG genes have been cloned. Among them we recently found a unique protein conjugation system essential for autophagy. The C-terminal glycine residue of a novel modifier protein Apg12p, a 186-amino-acid protein, is conjugated to a lysine residue of Apg5p, a 294-amino-acid protein, via an isopeptide bond. We also found that apg7 and apg10 mutants were unable to form an Apg12p-Apg5p conjugate. The conjugation reaction is mediated via Apg7p, E1-like activating enzyme and Apg10p, indicating that it is a ubiquitination-like system. These APG genes have mammalian homologues, suggesting that the Apg12 system is conserved from yeast to human. Further molecular and cell biological analyses of APG gene products will give us crucial clues to uncover the mechanism and regulation of autophagy.  相似文献   

7.
8.
9.
Cytosolic lipid droplets (LDs) are ubiquitous organelles in prokaryotes and eukaryotes that play a key role in cellular and organismal lipid homeostasis. Triacylglycerols (TAGs) and steryl esters, which are stored in LDs, are typically mobilized in growing cells or upon hormonal stimulation by LD-associated lipases and steryl ester hydrolases. Here we show that in the yeast Saccharomyces cerevisiae, LDs can also be turned over in vacuoles/lysosomes by a process that morphologically resembles microautophagy. A distinct set of proteins involved in LD autophagy is identified, which includes the core autophagic machinery but not Atg11 or Atg20. Thus LD autophagy is distinct from endoplasmic reticulum–autophagy, pexophagy, or mitophagy, despite the close association between these organelles. Atg15 is responsible for TAG breakdown in vacuoles and is required to support growth when de novo fatty acid synthesis is compromised. Furthermore, none of the core autophagy proteins, including Atg1 and Atg8, is required for LD formation in yeast.  相似文献   

10.
In budding yeast the final stages of the cell division cycle, cytokinesis and cell separation, are distinct events that require to be coupled, both together and with mitotic exit. Here we demonstrate that mutations in genes of the mitotic exit network (MEN) prevent cell separation and are synthetically lethal in combination with both cytokinesis and septation defective mutations. Analysis of the synthetic lethal phenotypes reveals that Iqg1p functions in combination with the MEN components, Tem1p, Cdc15p Dbf20p and Dbf2p to govern the re-polarization of the actin cytoskeleton to either side of the bud neck. In addition phosphorylation of the conserved PCH protein, Hof1p, is dependent upon these activities and requires actin ring assembly. Recruitment of Dbf2p to the bud neck is dependent upon actin ring assembly and correlates with Hof1p phosphorylation. Failure to phosphorylate Hof1p results in the increased stability of the protein and its persistence at the bud neck. These data establish a mechanistic dependency of cell separation upon an intermediate step requiring actomyosin ring assembly.  相似文献   

11.
12.
13.
14.
The cytoskeleton of Saccharomyces cerevisiae   总被引:15,自引:0,他引:15  
  相似文献   

15.
16.
The major cell death pathways are apoptosis and autophagy-type cell death in Drosophila. Overexpression of proapoptotic genes in developing imaginal tissues leads to the activation of caspases and apoptosis, but most of them show no effect on the polytenic cells of the fat body during the last larval stage. Surprisingly, overexpression of Hid induces caspase-independent autophagy in the fat body, as well as in most other larval tissues tested. Hid mutation results in inhibition of salivary gland cell death, but the disintegration of the larval midgut is not affected. Electron microscopy shows that autophagy is normally induced in fat body, midgut and salivary gland cells of homozygous mutant larvae, suggesting that Hid is not required for autophagy itself. Constitutive expression of the caspase inhibitor p35 produces identical phenotypes. Our results show that the large, post-mitotic larval cells do not react or activate autophagy in response to the same strong apoptotic stimuli that trigger apoptosis in small, mitotically active imaginal disc cells.  相似文献   

17.
Previous genetic evidence led to the conclusion that proteinase B of yeast was not involved in the function of chitin synthetase 1 (Chs1), based on the demonstration of normal septum formation, cell division and chitin deposition in mutants devoid of the proteinase (Zubenko, G.S., Mitchell, A.P., and Jones, E.W. (1979) Proc. Natl. Acad. Sci. USA 76, 2395-2399). Later, however, it was found that the essential enzyme for septum formation is chitin synthetase 2, whereas Chs1 acts as an auxiliary enzyme, whose absence results in daughter cell lysis under acidic conditions (Cabib, E., Sburlati, A., Bowers, B. and Silverman, S.J. (1989) J. Cell Biol. 108, 1665-1672). By using the lytic behavior as a criterion, we have now found that prb1 strains are not defective in Chs1 function. Certain strains contain a recessive suppressor of lysis which could mask the Chs1 defect. However, appropriate crosses and transformation experiments showed that the prb1 mutants do not harbor the suppressor. It may now be concluded with confidence that proteinase B is not required for chitin synthetase 1 function.  相似文献   

18.
MOTIVATION: The antizymes (AZ) are proteins that regulate cellular polyamine pools in metazoa. To search for remote homologs in single-celled eukaryotes, we used computer software based on hidden Markov models. The most divergent homolog detected was that of the fission yeast Schizosaccharomyces pombe. Sequence identities between S.POMBE: AZ and known AZs are as low as 18-22% in the most conserved C-terminal regions. The authenticity of the S.POMBE: AZ is validated by the presence of a conserved nucleotide sequence that, in metazoa, promotes a +1 programmed ribosomal frameshift required for AZ expression. However, no homolog was detected in the completed genome of the budding yeast Saccharomyces cerevisiae. Procedural details and supplementary information can be found at http://itsa.ucsf.edu/ approximately czhu/AZ.  相似文献   

19.
Autophagy is a unique intracellular protein degradation system accompanied by autophagosome formation. Besides its important role through bulk degradation in supplying nutrients, this system has an ability to degrade certain proteins, organelles, and invading bacteria selectively to maintain cellular homeostasis. In yeasts, Atg8p plays key roles in both autophagosome formation and selective autophagy based on its membrane fusion property and interaction with autophagy adaptors/specific substrates. In contrast to the single Atg8p in yeast, mammals have 6 homologs of Atg8p comprising LC3 and GABARAP families. However, it is not clear these two families have different or similar functions. The aim of this study was to determine the separate roles of LC3 and GABARAP families in basal/constitutive and/or selective autophagy. While the combined knockdown of LC3 and GABARAP families caused a defect in long-lived protein degradation through lysosomes, knockdown of each had no effect on the degradation. Meanwhile, knockdown of LC3B but not GABARAPs resulted in significant accumulation of p62/Sqstm1, one of the selective substrate for autophagy. Our results suggest that while mammalian Atg8 homologs are functionally redundant with regard to autophagosome formation, selective autophagy is regulated by specific Atg8 homologs.  相似文献   

20.
Hsueh YP  Shen WC 《Eukaryotic cell》2005,4(1):147-155
Fungal pheromones function during the initial recognition stage of the mating process. One type of peptide pheromone identified in ascomycetes and basidiomycetes terminates in a conserved CAAX motif and requires extensive posttranslational modifications to become mature and active. A well-studied representative is the a-factor of Saccharomyces cerevisiae. Unlike the typical secretory pathway utilized by most peptides, an alternative mechanism involving the ATP-binding cassette transporter Ste6 is used for the export of mature a-factor. Cryptococcus neoformans, a bipolar human pathogenic basidiomycete, produces CAAX motif-containing lipopeptide pheromones in both MATa and MATalpha cells. Virulence studies with a congenic pair of C. neoformans serotype D strains have shown that MATalpha cells are more virulent than MATa cells. Characterization of the MATalpha pheromones indicated that an autocrine signaling loop may contribute to the differentiation and virulence of MATalpha cells. To further address the role of pheromones in the signaling loop, we identified a STE6 homolog in the C. neoformans genome and determined its function by gene disruption. The ste6 mutants in either mating-type background showed partially impaired mating functions, and mating was completely abolished in a bilateral mutant cross. Surprisingly, the MATalpha ste6 mutant does not exhibit a defect in monokaryotic fruiting, suggesting that the activation of the autocrine signaling loop by the pheromone is via a Ste6-independent mechanism. MFalpha pheromone itself is essential for this process and could induce the signaling response intracellularly in MATalpha cells. Our data demonstrate that Ste6 is evolutionarily conserved for mating and is not required for monokaryotic fruiting in C. neoformans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号