首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Mitomycin C (MC) was tested for its killing and mutagenic activities in the ad-3 forward-mutation test in Neurospora crassa. The test was conducted in 4 dikaryons of N. crassa in order to determine the effect of the uvs-2 allele, which causes a defect in nucleotide excision repair, on MC-induced killing and ad-3 mutation. These dikaryons were homokaryotic for uvs-2+ (H-12), homokaryotic for uvs-2 (H-59), and heterokaryotic for uvs-2/uvs-2+ (H-70 and H-71). MC induced killing and ad-3 mutation in H-12, but the presence of uvs-2 in the homokaryotic state (H-59) resulted in a great increase in the killing and mutagenic activities of MC. This increased sensitivity to MC-induced killing and mutation conferred by uvs-2 in the homokaryotic state (H-59 vs. H-12) is a different effect than that noted by others for a defect in nucleotide excision-repair in Escherichia coli and Salmonella typhimurium or in human cells. The dikaryons heterokaryotic for uvs-2/uvs-2+ had the same sensitivity to MC as H-12, indicating that for MC-induced killing and ad-3 mutation uvs-2 is recessive to uvs-2+.  相似文献   

2.
Sexual (MAT a/) and sexual (MAT a/a) strains of the yeast Saccharomyces cerevisiae, which are completely isogenic except at the MAT locus, were compared in their response to ultraviolet radiation. The effects of UV on survival, mitotic intragenic recombination, photoreactivation, and transformation efficiency with UV-irradiated plasmid DNA were examined. The sexual strain had enhanced survival and higher rates of mitotic intragenic recombination compared with the asexual strain. Exposure to visible light subsequent to irradiation increased the survival of both sexual and asexual strains, and decreased their rates of mitotic intragenic recombination. Similar results were obtained by Haladus and Zuk (1980) in their examination of sexual strains homozygous for rad6-1, and wild-type sexuals.

Our sexual strain was also consistently more proficient at transforming plasmid DNA, whether that DNA had been irradiated or not. When pre-irradiated with 25 J/m2 of UV, MAT a/ cells transformed more efficiently than MAT a/a cells. When subsequently exposed to light, the ability of these pre-irradiated cells to transform decreased for both strains with increasing irradiation of the plasmid. A smaller decrease in transformation efficiency occurred when cells of both strains were kept in the dark.

When pre-irradiated with 100 J/m2, the MAT a/ cells showed a 2-fold increase in their transformation efficiency of both irradiated and unirradiated plasmids by up to 2-fold, a phenomenon not seen in the MAT a/a cells even when pre-irradiated with much higher doses of UV. This increase in transformation efficiency was not, however, seen in the MAT a/ cells when they were exposed to visible light after UV irradiation. These results suggest that cells with the MAT a genotype have a UV-inducible system that increases the efficiency of transformation in the absence of visible light. This increase in transformation is not an induced increase in the repair of plasmid DNA, but rather an increase in the ability of pre-irradiated MAT a/ cells to take up exogenous DNA. MAT a/a cells do not appear to have a similarity inducible system. To the best of our knowledge, this phenomenon has not been previously reported.  相似文献   


3.
We have studied the molecular nature of ade2 mutations induced by UV light and bifunctional acridine-mustard (BAM) in wild-type (RAD) and in excision-deficient (rad2) strains of the yeast, Saccharomyces cerevisiae. In the RAD strain, UV causes 45% GC → AT transitions among all mutations; in the rad2 strain this value is 77%. BAM was shown to be highly specific for frameshift mutagenesis: 60% frameshifts in the RAD strain, and as many as 84% frameshifts in the rad2 strain were induced. Therefore, the rad2 mutation affects the specificity of UV- and BAM-induced mutagenesis in yeast. Experimental data agree with the view that the majority of mutations in the RAD strain are induced by a prereplicative mechanism, whereas mutations in the RAD strain are induced by a prereplicative mechanism, whereas mutations in the rad2 strain are predominantly postreplicative events. Our results also suggest that: (1) cytosine-containing photoproducts are the substances responsible for major premutational damage to DNA; (2) a fraction of the mutations may arise in the course of excision repair of UV photoproducts.  相似文献   

4.
The drug resistance plasmid pKM101 makes Escherichia coli resistant to the lethal effects of ultraviolet (UV) irradiation and more susceptible to mutagenesis by a variety of agents. The plasmid operon responsible for increasing mutagenesis has been termed mucAB (Mutagenesis, UV and chemical). We have isolated a derivative of pKM101 called pGW1975 which makes cells more sensitive to killing by UV but which retains the ability of pKM101 to increase susceptibility to methyl methanesulfonate (MMS) mutagenesis. pGW1975 increases UV mutagenesis less than pKM101 in a uvrA+ strain but more than pKM101 in a uvrA strain. muc point and insertion mutants of pKM101 and pGW1975 complement to restore the plasmid-mediated: (i) ability to reactivate UV-irradiated phage, (ii) resistance to killing by UV, and (iii) level of susceptibility to UV mutagenesis. We have identified a 2.0 kb region of pKM101 which is responsible for the complementation and which maps counterclockwise of mucAB.  相似文献   

5.
In S. cerevisiae, the REV3 gene, encoding the catalytic subunit of polymerase zeta, is involved in translesion synthesis and required for the production of mutations induced by ultraviolet radiation (UV) photoproducts and other DNA fork-blocking lesions, and for the majority of spontaneous mutations. To determine whether hREV3, the human homolog of yeast REV3, is similarly involved in error-prone translesion synthesis past UV photoproducts and other lesions that block DNA replication, an hREV3 antisense construct under the control of the TetP promoter was transfected into an infinite life span human fibroblast cell strain that expresses a high level of tTAk, the activator of that promoter. Three transfectant strains expressing high levels of hREV3 antisense RNA were identified and compared with their parental cell strain for sensitivity to the cytotoxic and mutagenic effects of UV. The three hREV3 antisense-expressing cell strains were not more sensitive than the parental strain to the cytotoxic effect of UV, but the frequency of mutants induced by UV in their HPRT gene was significantly reduced, i.e. to 14% that of the parent. Two of these hREV3 antisense-expressing cell strains were compared with the parental strain for sensitivity to (±)-7β,8-dihydroxy-9,10-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene (BPDE). They were not more sensitive than the parent strain to the cytotoxic effect of BPDE, but the frequency of mutants induced was significantly reduced, i.e. in one strain, to 17% that of the parent, and in the other, to 24%. DNA sequencing showed that the kinds of mutations induced by BPDE in the parental and the derivative strains did not differ and were similar to those found previously with finite life span human fibroblasts. The data strongly support the hypothesis that hRev3 plays a critical role in the induction of mutations by UV or BPDE. Because the level of hRev3 protein in human fibroblasts is below the level of antibody detection, it was not possible to demonstrate that the decrease in mutagenesis reflected decreased hRev3 protein. However, the conclusion is supported by the fact that in a similar study with a strain expressing a high level of antisense hREV1, a very similar result was obtained, i.e. UV or BPDE mutagenesis was virtually eliminated.  相似文献   

6.
A.M. DeLange  N.C. Mishra   《Mutation research》1982,96(2-3):187-199
Several MMS-sensitive mutants of Neurospora crassa were compared with the wild-type strain for their relative sensitivities to UV, X-ray, and histidine. They were also compared for the frequency of spontaneous mutation at the loci which confer resistance to p-fluorophenylalanine. The mutants were also examined for possible defects in meiotic behavior in homozygous crosses and for any change in the inducible DNA salvage pathways (as indicated by their ability to utilize DNA as the sole phosphate source in the growth medium). On the basis of these characterizations, the present MMS-sensitive mutants of Neurospora can be placed into three groups. The first group includes three mutants, mus-(SC3), mus-(SC13), and mus-(SC28). These are slow growers, insensitive to histidine with no apparent meiotic defects and may have reduced frequency of spontaneous mutation. In addition, their mycelial growth is sensitive to MMS but the conidial viability following MMS, UV or X-ray treatment appears normal or only slightly more sensitive than the wild-type. The second group includes only one mutant, mus-(SC15); its mycelial growth is very sensitive to MMS but the conidial survival following treatment with MMS or UV appears normal; however, the conidial survival following exposure to X-ray is significantly reduced. This mutant shows an increase (more than 10-fold) frequency of spontaneous mutation, but behaves normal like the wild-type with respect to fertility, growth rate and insensitivity to histidine. The third group includes mutants mus-(SC10), mus-(SC25), and mus-(SC29). These mutants are very sensitive to UV, X-rays and MMS and to histadine but have normal growth rates on minimal medium. Mutant mus-(SC10), but not mus-(SC25) and mus-(SC29), has an increased (11 ×) frequency of spontaneous mutation. On the basis of data presented, the MMS sensitivity of the first group of mutants cannot be ascertained to arise from a defect in the DNA repair pathways; instead, it may stem from altered cell permeability or other pleotropic effects of the mus mutations. However, it can be suggested that the second and third group of mus mutants may indeed result from a defect in the DNA repair pathways controlled by the mus genes; this conclusion is based on their cross-sensitivity to a number of DNA-damaging agents such as MMS, UV and/or X-ray, high frequencies of spontaneous mutation (mutator effects) and defects in meiotic behavior.  相似文献   

7.
The umuDC locus of Escherichia coli is required for most mutagenesis by UV and many chemicals. Mutations in E. coli umuDC genes cloned on pBR322-derived plasmids wer e isolated by two methods. First, spontaneously-arising mutant umuDC plasmids that failed to confe cold-sensitive growth on a lexA51(Def) strain were isolated by selection. Second, mutant umuDC plasmids that affected apparent mutant yield after UV-irradiation in a strain carrying umuD+C+ in the chromosome were isolated by screening hydroxylamine-mutagenized umuD+C+ plasmids. pBR322-derived umuD+C+ plasmids inhibited the induction of the SOS response of lexA+ strains as measured by expression of din::Mu dl(lac) Ap) fusionsbut most mutant plasmids did not. Mutant plasmids defective in complementation of chromosomal umuD44, umuC36, or both were found among those selected for failure to confer cold-sensitivity, whereas those identified by the screening procedure yielded mostly mutant plasmids with more complex phenotypes. We studied in greater detail a plasmid pLM109, carrying the umuC125 mutation. This plasmid increased the sensitivity of lexA+ strainsto killing by UV-irradiation but was able to complement the deficiencies of umuC mutants in UV mutagenesis. pLM109 failed to confer cold-sensitive growth on lexA(Def) strains but inhibited SOS induction in lexA+ strains. The effect of pLM109 on the UV sensitivity of lexA(Def)strains was similar to that of the parental umuD+C+ plasmid. The mutation responsible for the phenotypes of pLM109 was localized to a 615-bp fragment. DNA sequencing revealed that the umuC125 mutation was a G:C → A:T transition that changed codon 39 of umuC from GCC → GTC thus changing Ala39 to Val39. The implications of the umuC125 mutation for umuDC-dependent effects on UV-mutagenesis and cell survival after UV damage are discussed.  相似文献   

8.
A strain of Escherichia coli (NSW77) which is partially resistant to streptomycin was isolated by selecting for growth on plates supplemented with 12.5 μg/ml streptomycin, a concentration which completely inhibits growth of wild-type strains. The low-level resistance of the mutant appears to result from a reduced ability to accumulate streptomycin intracellularly. In addition, the mutant strain is unable to use succinate for growth because of a defective respiratory chain. Thus, membranes of the mutant strain were found to have approximately half the NADH and D-lactate oxidase activity of the parent strain. Succinate oxidase activity was reduced more drastically, to a level of 7% that of the parent strain. Moreover, membranes of the mutant were found to contain demethyl-menaquinone and, in place of ubiquinone, a structural analogue, 2-octaprenyl-3-methyl-6-methoxy-1,4 benzoquinone. The mutation responsible for both the Suc phenotype and partial resistance to streptomycin was found to be located near minute 15 on the bacterial chromosome. Both the biochemical and genetic evidence suggests that the mutation in strain NSW77 resides in the ubi F gene. Another previously characterized ubi F strain was also found to have a reduced capacity to take up an aminoglycoside antibiotic (gentamicin). These results suggest that the respiratory defects in ubi F strains are responsible for the reduced capacity of such strains to accumulate aminoglycosides.  相似文献   

9.
Vanillin (VAN) and cinnamaldehyde (CIN) are dietary antimutagens that effectively inhibit both induced and spontaneous mutations. We have shown previously that VAN and CIN reduced the spontaneous mutant frequency in Salmonella TA104 (hisG428, rfa, ΔuvrB, pKM101) by approximately 50% and that both compounds significantly reduced mutations at GC sites but not at AT sites. Previous studies have suggested that VAN and CIN may reduce mutations in bacterial model systems by modulating DNA repair pathways, particularly by enhancing recombinational repair. To further explore the basis for inhibition of spontaneous mutation by VAN and CIN, we have determined the effects of these compounds on survival and mutant frequency in five Escherichia coli strains derived from the wild-type strain NR9102 with different DNA repair backgrounds. At nontoxic doses, both VAN and CIN significantly reduced mutant frequency in the wild-type strain NR9102, in the nucleotide excision repair-deficient strain NR11634 (uvrB), and in the recombination-proficient but SOS-deficient strain NR11475 (recA430). In contrast, in the recombination-deficient and SOS-deficient strain NR11317 (recA56), both VAN and CIN not only failed to inhibit the spontaneous mutant frequency but actually increased the mutant frequency. In the mismatch repair-defective strain NR9319 (mutL), only CIN was antimutagenic. Our results show that the antimutagenicity of VAN and CIN against spontaneous mutation required the RecA recombination function but was independent of the SOS and nucleotide excision repair pathways. Thus, we propose the counterintuitive notion that these antimutagens actually produce a type of DNA damage that elicits recombinational repair (but not mismatch, SOS, or nucleotide excision repair), which then repairs not only the damage induced by VAN and CIN but also other DNA damage—resulting in an antimutagenic effect on spontaneous mutation.  相似文献   

10.
In previous studies, the two closely related strains of L5178Y (LY) mouse lymphoma cells, LY-R and LY-S, have been shown to differ in their sensitivity to UV and ionizing radiation. Thus, in comparison to strain LY-R, strain LY-S has been found to be more sensitive to the lethal effects of ionizing radiation, more resistant to the lethal effects of UV radiation, but less mutable at the hypoxanthine-guanine phosphoribosyl transferase (HGPRT) locus by both UV and X-radiation. In the present work, the lethal and mutagenic effects of ethyl methanesulfonate (EMS), methyl nitrosourea (MNU) and UV radiation (254 nm) were compared in the two strains. Mutability at the Na+/K+-ATPase locus as well as the HGPRT locus was determined. As previously reported, we found strain LY-S to be more resistant than strain LY-R to the lethal effects of UV radiation. In contrast, strain LY-S was more sensitive to the cytotoxic effects of the two alkylating agents. In spite of these differences in sensitivity, we found strain LY-S to be less mutable than strain LY-R by all 3 agents at the HGPRT locus. At the Na+/K+-ATPase locus, strain LY-S was also less mutable than strain LY-R by equal concentrations of EMS and UV radiation and by equitoxic concentrations of MNU. However, the difference between the strains was much more pronounced at the HGPRT locus than at the Na+/K+-ATPase locus. We have suggested that the interaction of unrepaired lesions in strain LY-S tends to cause an excess of deletions and multilocus effects, which in turn result in a locus-dependent decrease in the recovery of viable LY-S mutant cells.  相似文献   

11.
Spores of Bacillus subtilis possess a thick protein coat that consists of an electron-dense outer coat layer and a lamellalike inner coat layer. The spore coat has been shown to confer resistance to lysozyme and other sporicidal substances. In this study, spore coat-defective mutants of B. subtilis (containing the gerE36 and/or cotE::cat mutation) were used to study the relative contributions of spore coat layers to spore resistance to hydrogen peroxide (H(2)O(2)) and various artificial and solar UV treatments. Spores of strains carrying mutations in gerE and/or cotE were very sensitive to lysozyme and to 5% H(2)O(2), as were chemically decoated spores of the wild-type parental strain. Spores of all coat-defective strains were as resistant to 254-nm UV-C radiation as wild-type spores were. Spores possessing the gerE36 mutation were significantly more sensitive to artificial UV-B and solar UV radiation than wild-type spores were. In contrast, spores of strains possessing the cotE::cat mutation were significantly more resistant to all of the UV treatments used than wild-type spores were. Spores of strains carrying both the gerE36 and cotE::cat mutations behaved like gerE36 mutant spores. Our results indicate that the spore coat, particularly the inner coat layer, plays a role in spore resistance to environmentally relevant UV wavelengths.  相似文献   

12.
Ultraviolet-radiation-induced DNA-repair replication was measured in wild-type, polA1, uvrD3, and uvrD3 strains of Escherichia coli K12. A large stimulation of repair replication was observed in the uvrD3 strain, compaired to the wild-type and polA1 strains. This enhanced repair replication was reduced in the polA1 uvrD3 strain. Therefore, a uvrD3 mutation appears to affect the amount of repair replication performed by DNA polymerase I. In the polA1 strain, there also appears to be an effect of the uvrD3 mutation on the amount of repair replication performed by DNA polymerase III (and/or II). The enhanced repair replication observed for the uvrD3 strains appears to be in response to the enhanced DNA degradation observed for these strains.  相似文献   

13.
A uniform response to UV of four normal cell strains was demonstrated. One excision-proficient xeroderma pigmentosum variant strain (XP7TA) had a wild-type UV response but a second (XP30RO) was more sensitive. An excision-deficient xeroderma pigmentosum strain XP4L0 was substantially more sensitive than wild-type cell strains. A continuous post-irradiation treatment with non-toxic levels of caffeine enhanced the lethal effect of UV light in both xeroderma pigmentosum variant cell strains but not in cells from normal individuals. There was no detectable effect on cells from a xeroderma pigmentosum individual from complementation group A. These results correlate well with observations on the influence of caffeine on post-replication repair in the three classes of cells.  相似文献   

14.
Two UV-sensitive mutants of Saccharomyces cerevisiae rad 3 and rad 6 were tested for sensitivity to X-rays, MMS, EMS, HNO2 and DEB. Rad 3 mutant is more sensitive than the wild type strain only to HNO2 and DEB, while rad 6 is cross sensitive both to X-rays and all chemicals tested. Liquid holding recovery (LHR) was studied by comparison of cell survival immediately after mutagen treatment and after 5 days of storage in phosphate buffer. LH greatly increases cell survival of rad 3 mutant after DEB and slightly after EMS, MMS and HNO2, while after UV treatment LH significantly decreases survival of this mutant. LH increases survival of rad 6 mutant after exposure to UV, MMS and HNO2, but decreases survival of DEB-treated cells. Exposure of wild type strain to LH results in an increase of survival after UV, and DEB but not after MMS and HNO2. The results suggest that LHR is a strain- and mutagen-specific phenomenon and cannot be explained within the present knowledge of repair processes in yeast.  相似文献   

15.
为了探究非编码RNA(non-coding RNA,ncRNA)在氮代谢调控过程的作用,以苜蓿中华根瘤菌(Sinorhizobium meliloti)为出发菌株,鉴定并获得了与ntrC基因表达相关的ncRNA,利用lncPRO软件分析苜蓿中华根瘤菌中ncRNA与调控蛋白NtrC相互作用的可能性,最终确定了评分较高的4个基因,即SM2011_c06191SM2011_c06248SM2011_c07102SM2011_c07132,并对其中得分最高的SM2011_c06248基因进行研究。利用Northern blot验证ncRNA的表达,发现富氮处理后其表达水平呈先升高后降低的趋势。实验构建了SM2011_c06248基因敲除菌株,通过qRT-PCR发现SM2011_c06248在自然生长条件下表达无明显规律,富氮处理后,野生型菌株ncRNA表达水平呈先降低后升高再降低的趋势,与自然生长相比,ncRNA在20 min后表达水平明显上调;野生型菌株ntrCnar基因表达水平呈先降低后升高再降低的趋势;与野生型相比,SM2011_c06248基因敲除菌株SM∷248中ntrCnar基因表达水平明显下调。实验中构建SM2011_c06248、NtrC双突变菌株SM∷248-NtrC和SM2011_c06248过表达菌株SM:dld-248,qRT-PCR分析表明,与野生型相比,富氮处理后,SM∷248-NtrC菌株nar基因表达量无明显变化,SM:dld-248菌株ntrCnar基因表达水平显著上调。ncRNA SM2011_c06248可响应环境中氮元素信号变化,对ntrCnar基因的表达有正调控作用,且ntrCnar有上位基因效应。  相似文献   

16.
We describe a simple method to select for transfer of mutant alleles from the Escherichia coli chromosome to a plasmid which formerly carried the wild-type (wt) allele. The wt allele on the plasmid is modified by introduction of a unique restriction site (e.g., XhoI) and transformed into a rec + strain carrying the mutant allele on the chromosome. Upon homogenotization, the efficiency of which was increased by UV irradiation of the transforming plasmid [Chattoraj et al., Gene 27 (1982) 213–222], plasmids carrying the mutant allele are formed which are resistant to XhoI. These plasmids are selected from the population by resistance to XhoI digestion coupled with the low transformation efficiency of linear DNA molecules in recA strain. The method is efficient and rapid and has particular advantages in situations where the mutant allele is difficult to detect by its phenotype.  相似文献   

17.
The characteristics of Cd2+ accumulation by Euglena gracilis L. strain Z have been studied using sensitive and resistant cells. In both strains Cd2+ is mainly absorbed by a temperature- and light-dependent process. Resistance to Cd2+ is associated with a lower accumulation of Cd2+ and with a decreased affinity for Cd2+. Gel filtration on Sephadex G75 of the soluble fraction shows that resistance is not linked to an induction of metallothioneins.  相似文献   

18.
A major concern in the use of class IIa bacteriocins as food preservatives is the well-documented resistance development in target Listeria strains. We studied the relationship between leucocin A, a class IIa bacteriocin, and the composition of the major phospholipid, phosphatidylglycerol (PG), in membranes of both sensitive and resistant L. monocytogenes strains. Two wild-type strains, L. monocytogenes B73 and 412, two spontaneous mutants of L. monocytogenes B73 with intermediate resistance to leucocin A (+/-2.4 and +/-4 times the 50% inhibitory concentrations [IC50] for sensitive strains), and two highly resistant mutants of each of the wild-type strains (>500 times the IC50 for sensitive strains) were analyzed. Electrospray mass spectrometry analysis showed an increase in the ratios of unsaturated to saturated and short- to long-acyl-chain species of PG in all the resistant L. monocytogenes strains in our study, although their sensitivities to leucocin A were significantly different. This alteration in membrane phospholipids toward PGs containing shorter, unsaturated acyl chains suggests that resistant strains have cells with a more fluid membrane. The presence of this phenomenon in a strain (L. monocytogenes 412P) which is resistant to both leucocin A and pediocin PA-1 may indicate a link between membrane composition and class IIa bacteriocin resistance in some L. monocytogenes strains. Treatment of strains with sterculic acid methyl ester (SME), a desaturase inhibitor, resulted in significant changes in the leucocin A sensitivity of the intermediate-resistance strains but no changes in the sensitivity of highly resistant strains. There was, however, a decrease in the amount of unsaturated and short-acyl-chain PGs after treatment with SME in one of the intermediate and both of the highly resistant strains, but the opposite effect was observed for the sensitive strains. It appears, therefore, that membrane adaptation may be part of a resistance mechanism but that several resistance mechanisms may contribute to a resistance phenotype and that levels of resistance vary according to the type of mechanisms present.  相似文献   

19.
The expression of bacterial resistance to UV irradiation and nitrofurantoin by a novel R-plasmid pEB017 in DNA-repair-proficient (wild-type) and -deficient (recA; uvrA) host strains was compared to the effects of plasmid pKM101 in the isogenic strains. pEB017 partially protected the uvrA strain, and completely protected the wild-type and recA strains from the killing effect of UV irradiation; pKM101 had no effect on the recA strain and only enhanced the survival of the wild-type and the uvrA strains after UV irradiation. pEB017 conferred nitrofurantoin resistance 10-fold on the wild-type and the recA strains and 4-fold on the uvrA strain; pKM101 did not confer nitrofurantoin resistance on the wild-type and recA strains but gave 4-fold resistance in the uvrA strain.  相似文献   

20.
The effects of carbonyl cyanide m-chlorophenylhydrazone (CCCP) and tri-n-butyltin chloride (Bu3SnCl) on proline transport, proton uptake and the transmembrane pH gradient in intact cells have been compared in a CCCP-resistant mutant strain Escherichia coli UV6, and its parent strain, AN180. CCCP and Bu3SnCl inhibited proline uptake in AN180 but the pH gradient was affected only by CCCP. Neither uncoupler affected the pH gradient in UV6 although inhibition of proline uptake occurred at high concentrations. CCCP caused efflux of accumulated proline in both strains but Bu3SnCl was ineffective. Bu3SnCl did not prevent the efflux of proline induced by CCCP, indicating that Bu3SnCl had not inactivated the transport carrier. In contrast with the parent strain, CCCP failed to reverse the oxidation-dependent inhibition of the phosphotransferase system in UV6 even at concentrations causing inhibition of proline uptake. The phosphorylation potential of UV6 with succinate as substrate was lower than in AN180. This was associated with a 10-fold higher concentration of phosphate in succinate-grown UV6 than in AN180. These results suggest that CCCP and Bu3SnCl have different sites of action on the membrane energization system of intact cells of E. coli. A possible explanation of the differences between AN180 and UV6 is that the energization system is altered in the CCCP-resistant mutant. Both uncouplers stimulated the uptake of protons by intact cells to the same extent in UV6 as in AN180. In UV6, and in AN180 with Bu3SnCl, this was not accompanied by effects on the transmembrane pH gradient. The extent of proton uptake appeared to be related to the level of the highly anionic membrane-associated oligosaccharides in the periplasmic space. It is proposed the outer membrane acts as a partial barrier to protons and that the uncouplers can equilibrate protons between the extracellular medium and the periplasmic space in intact cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号