首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Since their discovery, germin and germin-like proteins (GLPs) were found to be associated with salt stress along with other physiological roles. Although a number of GLP family members showed spatio-temporal changes in expressional up-regulation or down-regulation upon exposure to salt stress across plant species, very little is known about any rice GLP member in relation to salt stress. Rice germin-like protein 1 (OsGLP1), belongs to “Cupin” superfamily, is a plant glycoprotein and is associated with the plant cell wall. Our previous studies on endogenous down-regulation of OsGLP1 in rice and heterologous expression in tobacco documented that the OsGLP1 possessing superoxide dismutase activity is involved in cell wall cross-linking and fungal disease resistance in plants. In the present study, the transgenic rice lines having reduced OsGLP1 expression were analyzed in advanced generation for deciphering the involvement of OsGLP1 under salt stress. OsGLP1 gene-silencing construct integated transgenic lines were confirmed by Southern hybridization and RNA-interfernce (RNAi) mediated gene-silencing of the transgenic rice lines was confirmed by northern blot analysis. The expression of endogenous OsGLP1 protein level was found to be reduced in salt sensitive indica rice cultivar Badshahbhog following salt stress. Additionally, the RNAi-mediated OsGLP1 gene-silencing in transgenic rice lines resulted improved salt tolerance as compared to the untransformed ones during seed germination, initial establishment, early seedling growth and callus proliferation. Salt tolerance nature of the OsGLP1 gene-silenced plants at early stages of growth and development depicted the negative correlation between the OsGLP1 expression and salt tolerance of rice.  相似文献   

3.
4.
5.
Plant growth and crop production are limited by environmental stress. We used a large population of transgenic Arabidopsis expressing rice full-length cDNAs to isolate the rice genes that improve the tolerance of plants to environmental stress. By sowing T2 seeds of the transgenic lines under conditions of salinity stress, the salt-tolerant line R07047 was isolated. It expressed a rice gene, OsSMCP1, which encodes a small protein with a single C2 domain, a Ca2+-dependent membrane-targeting domain. Retransformation of wild-type Arabidopsis revealed that OsSMCP1 is responsible for conferring the salt tolerance. It is particularly interesting that R07047 and newly constructed OsSMCP1-overexpressing Arabidopsis showed enhanced tolerance not only to high salinity but also to osmotic, dehydrative, and oxidative stresses. Furthermore, R07047 showed improved resistance to Pseudomonas syringae. The OsSMCP1 expression in rice is constitutive. Particle-bombardment-mediated transient expression analysis revealed that OsSMCP1 is targeted to plastids in rice epidermal cells. It induced overexpression of several nuclear encoded genes, including the stress-associated genes, in transgenic Arabidopsis. No marked morphological change or growth retardation was observed in R07047 or retransformants. For molecular breeding to improve the tolerance of crops against environmental stress, OsSMCP1 is a promising candidate.  相似文献   

6.
Calcineurin is a Ca2+- and calmodulin-dependent serine/threonine phosphatase and has multiple functions in animal cells including regulating ionic homeostasis. We generated transgenic rice plants that not only expressed a truncated form of the catalytic subunit of mouse calcineurin, but also were able to grow and fertilize normally in the field. Notably, the expression of the mouse calcineurin gene in rice resulted in its higher salt stress tolerance than the non-transgenic rice. Physiological studies have indicated that the root growth of transgenic plants was less inhibited than the shoot growth, and that less Na+ was accumulated in the roots of transgenic plants after a prolonged period of salt stress. These findings imply that the heterologous calcineurin plays a significant role in maintaining ionic homeostasis and the integrity of plant roots when exposed to salt. In addition, the calcineurin gene expression in the stems of transgenic plants correlated with the increased expression of the Rab16A gene that encodes a group 2-type late-embryogenesis-abundant (LEA) protein. Altogether our findings provide the first genetic and physiological evidence that expression of the mouse calcineurin protein functionally improves the salt stress tolerance of rice partly by limiting Na+ accumulation in the roots.  相似文献   

7.
Plasma membrane proteins play critical roles in sensing and responding abiotic and biotic stresses in plants. In the present study, we characterized a previously unknown gene stress associated little protein 1 (SALP1) encoding a plasma membrane protein. SALP1, a small and plant-specific membrane protein, contains only 74 amino acid residues. SALP1 was constitutively expressed in various rice tissues while highly expressed in roots, leaf blade, and immature panicles. Expression analysis indicated that SALP1 was induced by various abiotic stresses and abscisic acid (ABA). Subcellular localization assay indicated that SALP1 was localized on plasma membrane in rice protoplast cells. Overexpressing of SALP1 in rice improved salt tolerance through increasing free proline contents and the expression level of OsP5CS gene, and balancing ion contents under salt stress. Moreover, SALP1 transgenic rice showed reduced sensitivity to ABA treatment, and expression level of SALP1 is not altered by ABI5-like 1 protein. Conclusively, SALP1, a novel membrane protein, is involved in salt tolerance through an ABA-independent signaling pathway in rice.  相似文献   

8.
9.
Protein phosphorylation, regulated by protein kinases and protein phosphatases, is crucial for protein structure and function in eukaryotic organisms. Type 2C protein phosphatase (PP2C) belongs to the serine/threonine phosphatase family and its activities require the presence of a divalent magnesium or manganese ion. In the present study, a potential PP2C phosphatase (SjPtc1) was identified in Schistosoma japonicum. The SjPTC1 gene was found to be highly expressed in adult worms. A recombinant SjPtc1 protein showed typical PP2C phosphatase activity. Heterologous SjPTC1 expression reversed the sensitivity of yeast ptc1 null mutants toward H2O2, ZnCl2, cisplatin, and rapamycin. Collectively, the results suggest that SjPtc1 may take part in the regulation of cellular responses to oxidative stress, DNA damage stress, and the TOR (target of rapamycin) signaling pathway.  相似文献   

10.
High salt is a major environmental factor that threatens plant growth and development. Increasing evidence indicates that histone acetylation is involved in plant responses to various abiotic stress; however, the underlying epigenetic regulatory mechanisms remain poorly understood. In this study, we revealed that the histone deacetylase OsHDA706 epigenetically regulates the expression of salt stress response genes in rice (Oryza sativa L.). OsHDA706 localizes to the nucleus and cytoplasm and OsHDA706 expression is significantly induced under salt stress. Moreover, oshda706 mutants showed a higher sensitivity to salt stress than the wild-type. In vivo and in vitro enzymatic activity assays demonstrated that OsHDA706 specifically regulates the deacetylation of lysines 5 and 8 on histone H4 (H4K5 and H4K8). By combining chromatin immunoprecipitation and mRNA sequencing, we identified the clade A protein phosphatase 2 C gene, OsPP2C49, which is involved in the salt response as a direct target of H4K5 and H4K8 acetylation. We found that the expression of OsPP2C49 is induced in the oshda706 mutant under salt stress. Furthermore, the knockout of OsPP2C49 enhances plant tolerance to salt stress, while its overexpression has the opposite effect. Taken together, our results indicate that OsHDA706, a histone H4 deacetylase, participates in the salt stress response by regulating the expression of OsPP2C49 via H4K5 and H4K8 deacetylation.  相似文献   

11.
12.
13.
A cDNA for the gene ZFP182, encoding a C2H2-type zinc finger protein, was cloned from rice by RT-PCR. ZFP182 codes an 18.2 kDa protein with two C2H2-type zinc finger motifs, one nuclear localization signal and one Leu-rich domain. The DLN-box/EAR-motif, which exists in most of plant C2H2-type zinc finger proteins, does not exist in ZFP182. The expression analysis showed that ZFP182 gene was constitutively expressed in leaves, culms, roots and spikes at the adult rice plants, and markedly induced in the seedlings by cold (4 °C), 150 mM NaCl and 0.1 mM ABA treatments. The approximate 1.4 kb promoter region of ZFP182 gene was fused into GUS reporter gene and transformed into tobacco. The histochemical analysis revealed that GUS expression could not be detected in transformed tobacco seedlings under normal conditions, but strongly observed in tobacco leaf discs and the vascular tissue of roots treated with NaCl or KCl. Expression of ZFP182 in transgenic tobacco and overexpression in rice increased plant tolerance to salt stress. These results demonstrated that ZFP182 might be involved in plant responses to salt stress.  相似文献   

14.
We have characterized a member of the stress-associated protein (SAP) gene family from Sorghum bicolor (SbSAP14) with A20 and AN1 zinc-finger domains. Expression profiling revealed that SbSAP14 is specifically induced in response to dehydration, salt, and oxidative stress as well as abscisic acid treatment. During the early stage of salt stress, overexpression of SbSAP14 was able to prevent yellowing and withering of the leaf tip of rice plants. Measurements of malondialdehyde, ion leakage, and chlorophyll content demonstrated that transgenic rice had an enhanced tolerance to oxidative damage caused by salt stress. Under prolonged salt stress, transgenic rice plants had a higher seed germination rate and higher percentage seedling survival than wild-type (WT) plants. Importantly, in vivo and in situ assays revealed that the accumulation of reactive oxygen species in transgenic rice plants was significantly lower than that in WT plants. Among the six antioxidant genes tested, APX2, CatB, CatC, and SodA1 showed a higher expression level in transgenic rice than in WT rice. Based on these results, we propose that SbSAP14 may play a key role in antioxidant defense systems and possibly be involved in the induction of antioxidant genes in plants, suggesting a possible mechanism of the SAP gene family in stress defense response.  相似文献   

15.
《遗传学报》2022,49(8):766-775
Salt stress adversely affects plant growth, development, and crop yield. Rice (Oryza sativa L.) is one of the most salt-sensitive cereal crops, especially at the early seedling stage. Mitogen-activated protein kinase (MAPK/MPK) cascades have been shown to play critical roles in salt response in Arabidopsis. However, the roles of the MPK cascade signaling in rice salt response and substrates of OsMPK remain largely unknown. Here, we report that the salt-induced OsMPK4-Ideal Plant Architecture 1 (IPA1) signaling pathway regulates the salt tolerance in rice. Under salt stress, OsMPK4 could interact with IPA1 and phosphorylate IPA1 at Thr180, leading to degradation of IPA1. Genetic evidence shows that IPA1 is a negative regulator of salt tolerance in rice, whereas OsMPK4 promotes salt response in an IPA1-dependent manner. Taken together, our results uncover an OsMPK4-IPA1 signal cascade that modulates the salt stress response in rice and sheds new light on the breeding of salt-tolerant rice varieties.  相似文献   

16.
17.
18.
Salinity is an important environmental factor that adversely impacts crop growth and productivity. Malate dehydrogenases (MDHs) catalyse the reversible interconversion of malate and oxaloacetate using NAD(H)/NADP(H) as a cofactor and regulate plant development and abiotic stress tolerance. Vitamin B6 functions as an essential cofactor in enzymatic reactions involved in numerous cellular processes. However, the role of plastidial MDH in rice (Oryza sativa) in salt stress response by altering vitamin B6 content remains unknown. In this study, we identified a new loss‐of‐function osmdh1 mutant displaying salt stress‐tolerant phenotype. The OsMDH1 was expressed in different tissues of rice plants including leaf, leaf sheath, panicle, glume, bud, root and stem and was induced in the presence of NaCl. Transient expression of OsMDH1‐GFP in rice protoplasts showed that OsMDH1 localizes to chloroplast. Transgenic rice plants overexpressing OsMDH1 (OsMDH1OX) displayed a salt stress‐sensitive phenotype. Liquid chromatography–mass spectrometry (LC‐MS) metabolic profiling revealed that the amount of pyridoxine was significantly reduced in OsMDH1OX lines compared with the NIP plants. Moreover, the pyridoxine content was higher in the osmdh1 mutant and lower in OsMDH1OX plants than in the NIP plants under the salt stress, indicating that OsMDH1 negatively regulates salt stress‐induced pyridoxine accumulation. Furthermore, genome‐wide RNA‐sequencing (RNA‐seq) analysis indicated that ectopic expression of OsMDH1 altered the expression level of genes encoding key enzymes of the vitamin B6 biosynthesis pathway, possibly reducing the level of pyridoxine. Together, our results establish a novel, negative regulatory role of OsMDH1 in salt stress tolerance by affecting vitamin B6 content of rice tissues.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号