首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mechanism of catalysis of Bacillus macerans cyclomaltodextrin glucanyltransferase (CGTase, EC 2.4.1.19) was studied by trapping and isolating a covalent-enzyme intermediate. CGTase catalyzes an acceptor or coupling reaction between cyclomaltohexaose and a carbohydrate acceptor such as D-glucose. CGTase was incubated with 3H-labeled cyclomaltohexaose in the absence of any added acceptor. After 30 s of reaction, the enzyme was rapidly denatured and precipitated by the addition of 10% trifluoroacetic acid (TFA). Extensive washing of the precipitated protein showed retention of radioactivity with the protein. The precipitate was dissolved in 0.1 M TFA, containing 6 M urea and passed over a BioGel P-10 column. The protein fraction retained 95% of its original radioactivity. The reaction with [3H]cyclomaltohexaose was also stopped by the addition of TFA to give an inactive enzyme at pH 2.5. The enzyme was separated from unreacted cyclomaltohexaose on a BioGel P-10 column and was shown to be radioactive. When the radioactive protein fraction was rechromatographed on BioGel P-10, it retained 100% of the label. These results demonstrate the formation of a covalent carbohydrate-enzyme intermediate in the reactions catalyzed by CGTase.  相似文献   

2.
Dopamine-HCl and l-DOPA-α-glycosides were prepared by reaction with cyclomaltohexaose, catalyzed by Bacillus macerans cyclomaltodextrin glucanyltransferase. The reaction gave maltodextrins attached to dopamine and l-DOPA; the maltodextrins were trimmed by reactions with glucoamylase and β-amylase to produce α-glucosyl- and α-maltosyl-glycosides, respectively. The glucoamylase- or β-amylase-treated dopamine- and l-DOPA-α-glycosides were fractionated and purified by BioGel P-2 gel-filtration column chromatography and preparative descending paper chromatography. Analysis by MALDI-TOF mass spectrometry and one- and two-dimensional NMR showed that the purified glycosides of dopamine and l-DOPA were glycosylated at the hydroxyl groups of positions 3 and 4 of the catechol ring. The major product was found to be 4-O-α-glycopyranosyl l-DOPA, and it was shown to be more resistant to oxidative tolerance experiments, involving hydrogen peroxide and ferrous ion, than l-DOPA. l-DOPA-α-glycosides are possibly more effective substitutes for l-DOPA in treating Parkinson’s disease in that they are more resistant to oxidation and methylation, which renders l-DOPA ineffective and deleterious.  相似文献   

3.
Duan J  Zheng Y  Dong Q  Fang J 《Phytochemistry》2004,65(5):609-615
A pectic polysaccharide DL-2A with a molar mass of 8.5 x 10(5), was obtained from the boiling water extract of Diospyros kaki leaves. It had [alpha]20D -21.8 degrees (c 0.22, H2O) and consisted of rhamnose, arabinose, galactose, xylose and galacturonic acid units in the molar ratio of 0.4:3.4:2.4:1.0:0.8, along with traces of glucuronic acid. About 16.7% of galacturonic acid existed as the methyl ester. A combination of linkage analyses, periodate oxidation, partial acid hydrolysis, selective lithium-degraded reaction, ESIMS, 1H- and 13C- NMR spectral analyses revealed its structural features. It was found that DL-2A possessed an alpha-(1-->4)-galacturonan backbone with some insertions of alpha-1,2-Rhap residues. The side-chains of arabino-3,6-galactan were attached to the backbone via O-4 of Rhap residues and O-3 of GalAp residues, while 4-linked xylose residues (forming short linear chains) were directly linked to O-4 of rhamnose residues, not as part of the xylogalacturonan. These novel structural features enlarge the knowledge on the fine structure of pectic substances in the plant kingdom.  相似文献   

4.
The hydroxyl group stereochemistry of complexation of sodium vanadate(V) with Me alpha-Manp, Me alpha- and beta-Galp and selected O-methyl derivatives in D(2)O was determined by 51V, 1D and 2D 13C NMR spectroscopy at pD 7.8. The 51V approach served to show the extent of complexation and the minimum number of esters formed. That of Me alpha-Manp gave rise mainly to a 51V signal at delta -515, identical with that of its 4,6-di-O-methyl derivative, which had only a 2,3-cis-diol exposed. The 13C NMR spectra contained much weaker signals of the complexes, but both glycosides showed strong C-2 and C-3 alpha-shifts of +17.3 and +10.8 ppm, respectively. As expected, Me 2,3-Me(2)-alpha-Manp, which contains a 4,6-diol, did not complex. Me Galp anomers and their derivatives showed more diversity in the structure of its oxyvanadium derivatives. Me alpha-Galp, with its 3,4-cis-diol, complexed to give rise to 51V signals at delta -495 (9%), -508 (10%), and -534 (4%). These shifts and proportions were maintained with Me beta-Galp and Me 6Me-alpha-Galp. 51V NMR spectroscopy showed that Me 3Me-beta-Galp, with its possibly available 4,6-diol, did not complex. Similarly, Me alpha-Galp+vanadate gave a 13C DEPT spectrum that did not contain an inverted signal at delta >71.4, as would be expected of a C-6 resonance suffering a strong downfield alpha-shift. Me 2,6-Me(2)-alpha-Galp, with a 3,4-cis-diol group, gave rise to two 51V signals of complexes at delta -492 (9%) and -508 (9%), showing more than one structure of oxyvanadium derivatives.  相似文献   

5.
The O-specific polysaccharide of Providencia rustigianii O14 was obtained by mild acid degradation of the LPS and studied by chemical methods and NMR spectroscopy, including 2D 1H,(1)H COSY, TOCSY, NOESY, and 1H,(13)C HSQC experiments. The polysaccharide was found to contain N (epsilon)-[(S)-1-carboxyethyl]-N(alpha)-(D-galacturonoyl)-L-lysine ('alaninolysine', 2S,8S-AlaLys). The amino acid component was isolated by acid hydrolysis and identified by 13C NMR spectroscopy and specific optical rotation, using synthetic diastereomers for comparison. The following structure of the trisaccharide repeating unit of the polysaccharide was established:Anti-P. rustigianii O14 serum was found to cross-react with O-specific polysaccharides of Providencia and Proteus strains that contains amides of uronic acid with N(epsilon)-[(R)-1-carboxyethyl]-L-lysine and L-lysine.  相似文献   

6.
New kinds of acarbose analogues were synthesized by the reaction of acarbose with cyclomaltohexaose and cyclomaltodextrin glucanyltransferase (CGTase). Three major CGTase coupling products were separated and purified by Bio-Gel P2 gel-permeation chromatography. Digestion of the three products by beta-amylase and glucoamylase showed that they were composed of maltohexaose (G6), maltododecaose (G12), and maltooctadecaose (G18), respectively, attached to the nonreducing-end of acarbose. 13C NMR of the glucoamylase product (D-glucopyranosyl-acarbose) showed that the D-glucose moiety was attached alpha- to the C-4-OH group of the nonreducing-end cyclohexene ring of acarbose, indicating that the maltodextrins were attached alpha-(1-->4) to the nonreducing-end cyclohexene of acarbose.  相似文献   

7.
The X-ray diffraction analysis, (13)C CP MAS NMR spectra and powder X-ray diffraction patterns were obtained for selected methyl glycosides: alpha- and beta-d-lyxopyranosides (1, 2), alpha- and beta-l-arabinopyranosides (3, 4), alpha- and beta-d-xylopyranosides (5, 6) and beta-d-ribopyranoside (7) and the results were confirmed by GIAO DFT calculations of shielding constants. In X-ray diffraction analysis of 1 and 2, a characteristic shortening and lengthening of selected bonds was observed in molecules of 1 due to anomeric effect and, in crystal lattice of 1 and 2, hydrogen bonds of different patterns were present. Also, an additional intramolecular hydrogen bond with the participation of ring oxygen atom was observed in 1. The observed differences in chemical shifts between solid state and solution come from conformational effects and formation of various intermolecular hydrogen bonds. The changes in chemical shifts originating from intermolecular hydrogen bonds were smaller in magnitude than conformational effects. Furthermore, the powder X-ray diffraction (PXRD) performed for 4, 5 and 7 revealed that 7 existed as a mixture of two polymorphs, and one of them probably consisted of two non-equivalent molecules.  相似文献   

8.
After removal of the mucilage with water at room temperature, pectic polysaccharides were solubilized from Opuntia ficus-indica fruit skin, by sequential extraction with water at 60 degrees C (WSP) and EDTA solution at 60 degrees C (CSP). Polysaccharides with neutral sugar content of 0.48 and 0.36 mol/mol galacturonic acid residue were obtained, respectively, in the WSP and CSP extracts. These pectic polysaccharides were de-esterified and fractionated by anion-exchange chromatography, yielding for each extract five fractions, which were thereafter purified by size-exclusion chromatography. Two of these purified fractions were characterized by sugar analysis combined with methylation and reduction-methylation analysis. The study was then supported by (1)H and (13)C NMR spectroscopy. The results showed that the water-soluble fraction WSP3 and the EDTA soluble fraction CSP3, consisted of a disaccharide repeating unit -->2)-alpha-l-Rhap-(1-->4)-alpha-d-GalpA-(1--> backbone, with side chains attached to O-4 of the rhamnosyl residues. The side chains contained highly branched alpha-(1-->5)-linked arabinan and short linear beta-(1-->4)-linked galactan.  相似文献   

9.
Nineteen species of Passiflora (Passifloraceae) were examined for the presence of cyanogenic glycosides. Passibiflorin, a bisglycoside containing the 6-deoxy-beta-D-gulopyranosyl residue, was isolated from P. apetala, P. biflora, P. cuneata, P. indecora, P. murucuja and P. perfoliata. In some cases this glycoside co-occurs with simple beta-D-glucopyranosides: tetraphyllin A, deidaclin, tetraphyllin B, volkenin, epivolkenin and taraktophyllin. P. citrina contains passicapsin, a rare glycoside with the 2,6-dideoxy-beta-D-xylo-hexopyranosyl moiety, while P. herbertiana contains tetraphyllin A, deidaclin, epivolkenin and taraktophyllin, P. discophora tetraphyllin B and volkenin, and P. x violacea tetraphyllin B sulfate. The remaining species were noncyanogenic. The glycosides were identified by 1H and 13C NMR spectroscopy following isolation by reversed-phase preparative HPLC. From P. guatemalensis, a new glucoside named passiguatemalin was isolated and identified as a 1-(beta-D-glucopyranosyloxy)-2,3-dihydroxycyclopentane-1-carbonitrile. An isomeric glycoside was prepared by catalytic hydrogenation of gynocardin. alpha-Hydroxyamides corresponding to the cyanogenic glycosides were isolated from several Passiflora species. These alpha-hydroxyamides, presumably formed during processing of the plant material, behave as cyanogenic compounds when treated with commercial Helix pomatia crude enzyme preparation. Thus, the enzyme preparation appears to contain an amide dehydratase, which converts alpha-hydroxyamides to cyanohydrins that liberate cyanide; this finding is of interest in connection with analysis of plant tissues and extracts using Helix pomatia enzymes.  相似文献   

10.
Nine species from the genus Stachys L. representing subgenera Stachys and Betonica were surveyed for flavonoid glycosides by means of HPLC coupled to diode-array detection and LC-APCI-MS. Those species belonging to subgenus Betonica were characterised by the presence of glycosides of tricetin methyl ethers, including a new derivative, which was isolated from S. scardica Griseb. and identified as tricetin 3',4',5' -trimethyl ether 7-O-beta-glucopyranoside by spectroscopic methods. This type of flavonoid was absent from species belonging to subgenus Stachys and can be considered as a chemosystematic marker for subgenus Betonica.  相似文献   

11.
Reactions of two aromatic and two aliphatic amines with methyl 6-O-p-toluenesulfonyl-alpha-D-glucopyranoside or methyl 6-O-p-toluenesulfonyl-beta-D-glucopyranoside were performed on a micro-scale. The synthesis and preparative isolation methods have been developed for quaternary N-(methyl 2,3,4-tri-O-acetyl-6-deoxy-alpha- and -beta-D-glucopyranoside-6-yl)ammonium salts derived from three amines: trimethylamine, 2-methylpyridine, and pyridine. The reaction products were examined with 1H, 13C NMR spectroscopy. N-(Methyl 2,3,4-tri-O-acetyl-6-deoxy-beta-d-glucopyranoside-6-yl)trimethylammonium tosylate was additionally analyzed with X-ray crystallography.  相似文献   

12.
Drosophila alcohol dehydrogenase (DADH) is an NAD+-dependent enzyme that catalyzes the oxidation of alcohols to aldehydes/ketones and that is also able to further oxidize aldehydes to their corresponding carboxylic acids. The structure of the ternary enzyme-NADH-acetate complex of the slow alleloform of Drosophila melanogaster ADH (DmADH-S) was solved at 1.6 A resolution by X-ray crystallography. The coenzyme stereochemistry of the aldehyde dismutation reaction showed that the obtained enzyme-NADH-acetate complex reflects a productive ternary complex although no enzymatic reaction occurs. The stereochemistry of the acetate binding in the bifurcated substrate-binding site, along with previous stereochemical studies of aldehyde reduction and alcohol oxidation shows that the methyl group of the aldehyde in the reduction reaction binds to the R1 and in the oxidation reaction to the R2 sub-site. NMR studies along with previous kinetic studies show that the formed acetaldehyde intermediate in the oxidation of ethanol to acetate leaves the substrate site prior to the reduced coenzyme, and then binds to the newly formed enzyme-NAD+ complex. Here, we compare the three-dimensional structure of D.melanogaster ADH-S and a previous theoretically built model, evaluate the differences with the crystal structures of five Drosophila lebanonensis ADHs in numerous complexed forms that explain the substrate specificity as well as subtle kinetic differences between these two enzymes based on their crystal structures. We also re-examine the electrostatic influence of charged residues on the surface of the protein on the catalytic efficiency of the enzyme.  相似文献   

13.
Besides the formation of the aminotriazine N6-[4-(3-amino-1,2,4-triazin-5-yl)-2,3-dihydroxybutyl]-L-lysine, the reaction of [1-13C]D-glucose with lysine and aminoguanidine leads to the generation of 6-[2-([[amino(imino)methyl]hydrazono]methyl)pyridinium-1-yl]-L-norleucine (14-13C1). The dideoxyosone N6-(2,3-dihydroxy-5,6-dioxohexyl)-L-lysine was shown to be a precursor in the formation of 14-13C1, which proceeds via the reactive carbonyl intermediate 6-(2-formylpyridinium-1-yl)-L-norleucine (13-13C1). In order to study the reactivity of 13-13C1, the model compound 1-butyl-2-formylpyridinium (18) was prepared in a two-step procedure starting from 2-pyridinemethanol. The reaction of the pyridinium-carbaldehyde 18 with L-lysine yielded the Strecker analogous degradation product 2-(aminomethyl)-1-butylpyridinium and another compound, which was shown to be as 1-butyl-2-[(2-oxopiperidin-3-ylidene)methyl]pyridinium. Reaction of 18 with the C-H acidic 4-hydroxy-5-methylfuran-3(2H)-one leads to the formation of the condensation product 1-butyl-2-[hydroxy-(4-hydroxy-5-methyl-3-oxofuran-2(3H)-ylidene)methyl]-pyridinium.  相似文献   

14.
The branched pentasaccharide methyl 6'-alpha-maltosyl-alpha-maltotrioside was chemically synthesised and investigated as a primer for particulate starch synthase II (SSII) using starch granules prepared from the low-amylose pea mutant lam as the enzyme source. For chemical synthesis, the trichloroacetimidate activation method was used to synthesise methyl O-(2,3,4,6-tetra-O-benzyl-alpha-D-glucopyranosyl)-(1-->4)-O-(2,3,6-tri-O-benzyl-alpha-D-glucopyranosyl)-(1-->6)-O-[(2,3,4,6-tetra-O-benzyl-alpha-D-glucopyranosyl-(1-->4)]-O-(2,3-di-O-benzyl-alpha-D-glucopyranosyl)-(1-->4)-2,3,6-tri-O-benzyl-alpha-D-glucopyranoside, which was then debenzylated to provide the desired branched pentasaccharide methyl 6'-alpha-maltosyl-alpha-maltotrioside as documented by 1H and 13C NMR spectroscopy. Using a large excess of the maltoside, the pentasaccharide was tested as a substrate for starch synthase II (SSII). Both of the non-reducing ends of methyl 6'-alpha-maltosyl-alpha-maltotrioside were extended equally resulting in two hexasaccharide products in nearly equal amounts. Thus, SSII catalyses an equimolar and non-processive elongation reaction of this substrate. Accordingly, the presence of the alpha-1,6 linkages does not dictate a specific structure of the pentasaccharide in which only one of the two non-reducing ends are available for extension.  相似文献   

15.
Bovine α1,3galactosyltransferase (α1,3GalT) transfers galactose from UDP-α-galactose to terminal β-linked galactosyl residues with retention of configuration of the incoming galactose residue. The epitope synthesized has been shown to be critical for xenotransplantation. According to a proposed double-displacement reaction mechanism, glutamate-317 (E317) is thought to be the catalytic nucleophile. The proposed catalytic role of E317 involves an initial nucleophilic attack with inversion of configuration and formation of a covalent sugar–enzyme intermediate between E317 and galactose from the donor substrate, followed by a second nucleophilic attack performed by the acceptor substrate with a second inversion of configuration. To determine whether E317 of α1,3GalT is critical for enzyme activity, site-directed mutagenesis was used to substitute alanine, aspartic acid, cysteine and histidine for E317. If the proposed reaction mechanism for the α1,3GalT enzyme is correct, E317D and E317H would produce active enzymes since they can act as nucleophiles. The non-conservative mutation E317A and conservative mutation E317C are predicted to produce inactive or very low activity enzymes since the E317A mutant cannot engage in a nucleophilic attack, and the E317C mutant would trap the galactose residue. The results obtained demonstrate that E317D and E317H mutants retained activity, albeit significantly less than the wild-type enzyme. Additionally, both E317A and E317C mutant also retained enzyme activity, suggesting that E317 is not the catalytic nucleophile proposed in the double-displacement mechanism. Therefore, either a different amino acid may act as the catalytic nucleophile or the reaction must proceed by a different mechanism.  相似文献   

16.
The syntheses of new oxamide derivatives of methyl 2-amino-2-deoxy-alpha-D-glucopyranoside and amino acid or peptide esters are presented. The reaction of methyl 3,4,6-tri-O-acetyl-2-acetamido-2-deoxy-alpha-D-glucopyranoside and oxalyl chloride gave N-(methyl 3,4,6-tri-O-acetyl-2-deoxy-alpha-D-glucopyranosid-2-yl) oxamic acid chloride which on reaction with the ester of Gly, L-Ala, L-Phe, GlyGly, Gly-L-Phe and Gly-L-Ala afforded N-(methyl 3,4,6-tri-O-acetyl-2-deoxy-alpha-D-glucopyranosid-2-yl), N'-oxalyl-amino acid or dipeptide esters. The structure of the oxamides was studied using 1H, 13C NMR in solution and solid state.  相似文献   

17.
Single-crystal X-ray diffraction and high-resolution (1)H and (13)C NMR spectral data for methyl 3,4-di-O-acetyl-1,5-anhydro-2-deoxy-D-arabino-hex-1-enopyranuronate are reported. The (5)H(4) conformation was found to be the preferred form for this glycal, both in the crystal lattice and in solution. The factors determining the (4)H(5)<==>(5)H(4) conformational equilibrium for acetylated glycals are discussed.  相似文献   

18.
For use as the internal standards in a quantitative analysis of natural jasmonic acid (JA) and methyl jasmonate (JAMe) by gas chromatography-mass spectrometry-selected ion monitoring, (±)-2-(2,3–2H2)JA and its methyl ester, (±)-2-(2,3–2H2)JAMe, were efficiently prepared from 2-(2–pentyl)-2-cyclopentenone through catalytic semi-deuteriogenation of acetylenic intermediates with deuterium gas in pyridine.  相似文献   

19.
A survey of the flavonoid glycosides of selected taxa in the genus Veronica yielded two new acylated 5,6,7,3',4'-pentahydroxyflavone (6-hydroxyluteolin) glycosides and two unusual allose-containing acylated 5,7,8,4'-tetrahydroxyflavone (isoscutellarein) glycosides. The new compounds were isolated from V. liwanensis and V. longifolia and identified using NMR spectroscopy as 6-hydroxyluteolin 4'-methyl ether 7-O-alpha-rhamnopyranosyl(1"'-->2")[6"-O-acetyl-beta-glucopyranoside] and 6-hydroxyluteolin 7-O-(6"-O-(E)-caffeoyl)-beta-glucopyranoside, respectively. Isoscutellarein 7-O-(6"'-O-acetyl)-beta-allopyranosyl(1"'-->2")-beta-glucopyranoside was obtained from both V. intercedens and V. orientalis and its 4'-methyl ether from V. orientalis only. Complete 1H and 13C NMR spectral assignments are presented for both isoscutellarein glycosides. Two iridoid glucosides new to the genus Veronica (melittoside and globularifolin) were also isolated from V. intercedens.  相似文献   

20.
A series of mannotrisaccharides were synthesized by two distinct chemical pathways as probes of the enzymes involved in the early stages of mammalian complex N-glycan formation. Methyl (alpha-D-mannopyranosyl)-(1-->3)-[(alpha-D-mannopyranosyl)-(1-->6)]-beta-D-mannopyranoside (6) and methyl (2-deoxy-2-fluoro-alpha-D-mannopyranosyl)-(1-->3)-[(2-deoxy-2-fluoro-alpha-D-mannopyranosyl)-(1-->6)]-beta-D-mannopyranoside (8) were rapidly synthesized from unprotected methyl beta-D-mannopyranoside (12). Methyl (2-deoxy-2-fluoro-alpha-D-mannopyranosyl)-(1-->3)-[(alpha-D-mannopyranosyl)-(1-->6)]-beta-D-mannopyranoside (7) and methyl (alpha-D-mannopyranosyl)-(1-->3)-[(2-deoxy-2-fluoro-alpha-D-mannopyranosyl)-(1-->6)]-beta-D-mannopyranoside (9) were synthesized from the common orthogonally protected precursor methyl 2-O-acetyl-4,6-O-benzylidene-beta-D-mannopyranoside (15). The 2-deoxy-2-fluoro substitution common to trisaccharides 7-9 renders these analogues resistant to enzyme action in two distinct ways. Firstly the fluorine serves as a non-nucleophilic isostere for the acceptor hydroxyl in studies with glycosyl transferases GnT-I and GnT-II (7 and 9, respectively). Secondly it should render trisaccharide 8 stable to hydrolysis by the mannosidases Man-II and Man-III by inductive destabilization of their oxocarbenium ion-like transition states. These analogues should be useful for structural studies on these enzymes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号