首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Four envelope cells are responsible for the formation of the basiconical sensilla of Calliphora. They are the thecogen, trichogen, and tormogen cells, and envelope cell 4. In early stages of development the still subepithelial sensory cilia are completely enclosed by the innermost thecogen cell. The first formation movements are initiated by a growth thrust of the hair-forming cell into the exuvial space. The sensory cilia only begin to grow into the hair anlage when the hair-forming cell has almost reached its final length. As soon as growth is completed the trichogen cell, tormogen cell, and envelope cell 4 start to excrete cuticular material. The trichogen cell forms the perforated part of the hair shaft and the stimulus-conducting system consisting of the pore tubules. The tormogen cell is responsible for the excretion of the basal non-perforated hair shaft and sheath cell 4 forms the proximal part of the socket region. The thecogen cell only begin to produce dendritic sheath material when the sensory hair is almost complete.Approximately 7–8 days after pupation the tormogen cell degenerates, having, by this time, produced about two-thirds of the sensilla cuticle. The surrounding envelope cells incorporate cell fragments of the tormogen cell. The trichogen cell continues the secretion where the tormogen cell left off. When the secretion of cuticle is finished the sheath cells begin to withdraw towards the proximal direction and to form microvilli on the apical membrane. The resulting outer receptor lymph space is bordered by envelope cell 4 and the trichogen and thecogen cells. The tormogen cell is absent in the sensilla of the imago.Abbreviations DS dendritic sheath - E4 envelope cell 4 - Ex exuvial space - G glial cell - iD inner dendritic segment - iRL inner receptor lymph space - oRL outer receptor lymph space - oD outer dendritic segment - P pore - PT pore tubules - S sensory cell - T thecogen cell - TO tormogen cell - TR trichogen cell Part 1 of a dissertation accepted by the Faculty of Bio- and Geosciences, University of Karlsruhe  相似文献   

2.
Summary— We have previously demonstrated that intestinal and kidney finite cell lines were resistant to L monocytogenes invasion (ie allowed low bacterial entry and no intracellular multiplication) in contrast to the continuous cell lines which were susceptible to Listeria invasion (ie allowed high bacterial entry and intracellular multiplication) (Velge et al (1994a) Med Microbial Immunol 183, 145). The aim of this study was to discover whether epigenetic or genetic cellular modifications could convert L monocytogenes resistant cells into a susceptible phenotype and to determine the cellular steps involved in Listeria susceptibility. Among the 5-azacytidine treated finite cell lines, the untransformed immortal cell lines established remained resistant to L monocytogenes invasion whereas the weakly transformed continuous cell lines established were converted into a susceptible phenotype. Transfection of resistant cells by SV40 large T antigen induced only highly transformed continuous cell lines displaying a susceptible phenotype. Taken together these data show that cell transformation enhanced Listeria invasion. This conclusion was supported by the observation that L monocytogenes was able to induce cell foci within murine finite cell monolayers. This morphological cell transformation was completely reversible and required live bacteria inside cells. In conclusion, we may speculate that the L monocytogenes intracellular multiplication observed within cell foci could be explained by the loss of contact inhibition of the finite cell monolayer. Indeed, the loss of both contact inhibition and anchorage-dependent growth are the key steps involved in the L monocytogenes susceptibility phenotype.  相似文献   

3.
The ability of several continuous tick cell culture lines to support growth of tickborne spiroplasmas (helical, wall-less prokaryotes in the classMollicutes) was assessed. Seven triturates, prepared from pools ofIxodes pacificus ticks naturally infected with theSpiroplasma sp. (group VI) organism, were retrieved from frozen (–70°C) storage and passaged in three distinct tick cell lines, in antibiotic-free tick cell culture medium alone, or in spiroplasma culture medium (SP-4 formulation). Six spiroplasma strains were recovered in the RML-19 cell line fromDermacentor variabilis, and five isolations were made in another cell line (RML-15) from this tick species. None was recovered in aRhipicephalus sanguineus cell line (RML-23), in tick cell culture medium, or in SP-4 broth medium. One of the spiroplasma isolates (Y43) was maintained through four consecutive weekly refeedings of theD. variabilis cell line and for three feedings ofR. sanguineus cells, where numbers of spiroplasmas in cell supernatants reached levels comparable to those obtained in the SP-4 medium.A laboratory-adapted strain (SMCA) ofSpiroplasma mirum, a second helical mollicute of tick origin (the suckling mouse cataract agent), grew in three tick cell lines (RML-15, RML-23, and RML-16 cells fromD. parumapertus), in three mosquito cell lines (fromAedes albopictus, Ae. aegypti, andCulex quinquefasciatus), and in both cell culture medium alone and in SP-4 medium. The organisms survived for 1–2 weeks, but failed to multiply, in cell lines fromC. tritaeniorhynchus, Antheraea eucalypti, orXenopus laevis. Some evidence of cytopathic effect ofS. mirum on tick cell lines was seen, although growth of the organism in mosquito cell cultures was not associated with cell toxicity. The use of arthropod cell lines appears to have value in the primary isolation of arthropod- or insect-derived mollicutes and for the study of cytopathogenicity of these wall-less prokaryotes.  相似文献   

4.
The main aim of our study was to determine the physiological function of NagA enzyme in the Listeria monocytogenes cell. The primary structure of the murein of L. monocytogenes is very similar to that of Escherichia coli, the main differences being amidation of diaminopimelic acid and partial de-N-acetylation of glucosamine residues. NagA is needed for the deacetylation of N-acetyl-glucosamine-6 phosphate to glucosamine-6 phosphate and acetate. Analysis of the L. monocytogenes genome reveals the presence of two proteins with NagA domain, Lmo0956 and Lmo2108, which are cytoplasmic putative proteins. We introduced independent mutations into the structural genes for the two proteins. In-depth characterization of one of these mutants, MN1, deficient in protein Lmo0956 revealed strikingly altered cell morphology, strongly reduced cell wall murein content and decreased sensitivity to cell wall hydrolase, mutanolysin and peptide antibiotic, colistin. The gene products of operon 150, consisting of three genes: lmo0956, lmo0957, and lmo0958, are necessary for the cytosolic steps of the amino-sugar-recycling pathway. The cytoplasmic de-N-acetylase Lmo0956 of L. monocytogenes is required for cell wall peptidoglycan and teichoic acid biosynthesis and is also essential for bacterial cell growth, cell division, and sensitivity to cell wall hydrolases and peptide antibiotics.  相似文献   

5.
During development one mechanism for generating different cell types is asymmetric cell division, by which a cell divides and contributes different factors to each of its daughter cells. Asymmetric cell division occurs through out the eukaryotic kingdom, from yeast to humans. Many asymmetric cell divisions occur in a defined orientation. This implies a cellular mechanism for sensing direction, which must ultimately lead to differences in gene expression between two daughter cells. In this review, we describe two classes of molecules: regulatory factors that are differentially expressed upon asymmetric cell division, and components of a signal transduction pathway that may define cell polarity. The lin-11 and mec-3 genes of C. elegans, the Isl-1 gene of mammals and the HO gene of yeast, encode regulatory factors that determine cell type of one daughter after asymmetric cell division. The CDC24 and CDC42 genes of yeast affect both bud positioning and orientation of mating projections, and thus may define a general cellular polarity. We speculate that molecules such as Cdc24 and Cdc42 may regulate expression of genes such as lin-11, mec-3, Isl-1 and HO upon asymmetric cell division.  相似文献   

6.
Natural resources of paclitaxel, an effective anticancer compound, were threatened with extinction soon after the discovery of this valuable substance. Cell suspension cultures derived from different Taxus species have rapidly become an alternative source of paclitaxel and other taxanes. In this paper we provide some insight into cell growth characteristics in cell suspension culture of Taxus x media cv. Hicksii, with emphasis on the effects of jasmonic acid (JA) on taxane production in cell lines with different initial taxane content. Additionally cell growth characteristics of two cell lines was followed during cultivation of cell suspension culture of Taxus x media cv. Hicksii. Packed cell volume (PCV) was shown to be a reliable and efficient alternative for measuring cell growth instead of fresh and dry weight. The initial total taxane content was screened in a number of cell lines, followed by observing the effect of JA on cell mass and total taxane production of selected lines. We showed a great variability in initial taxane content in different cell lines, which decreased during cell suspension maintenance. JA was shown to inhibit cell growth and increase total taxane production (14 to 106 fold).  相似文献   

7.
Summary The ultrastructure of the protonephridial system of the lycophore larva of Gyrocotyle urna Grube and Wagener, 1852, is described. It consists of six terminal cells, at least two proximal canal cells, two distal canal cells and two nephridiopore cells. The terminal cells and the proximal canal cell build up the filtration weir with its two circles of weir rods. The proximal canal cell constitutes a solid, hollow cylinder without a cell gap and desmosome. The distal canal cell is characterized by a strong reduction of the canal lumen by irregularly shaped microvilli. The nephridiopore region is formed by a nephridiopore cell; its cell body is located at some distance proximally within the larva. The connection among different canal cells is brought about by septate desmosomes. Morphological, evolutionary and functional aspects of the protonephridial system within Platyhelminthes are discussed. The structure of the proximal canal cells without a desmosome is considered an autapomorphy of Cestoda.Abbreviations ci cilia of the terminal cell - Co distal canal cell - col lumen of the distal canal cell - Ep epidermis - er outer rods of the filtration weir - il inner leptotriches - ir inner rods of the filtration weir - ld lipid droplets - mt microtubule - mv microvilli - Nc nephridiopore cell - Ne neodermis anlage cells - nu nucleus - pC proximal canal cell - ro ciliary rootlets - sd septate desmosome - Tc terminal cell  相似文献   

8.
In angiosperms, the first zygotic division usually gives rise to two daughter cells with distinct morphologies and developmental fates, which is critical for embryo pattern formation; however, it is still unclear when and how these distinct cell fates are specified, and whether the cell specification is related to cytoplasmic localization or polarity. Here, we demonstrated that when isolated from both maternal tissues and the apical cell, a single basal cell could only develop into a typical suspensor, but never into an embryo in vitro. Morphological, cytological and gene expression analyses confirmed that the resulting suspensor in vitro is highly similar to its undisturbed in vivo counterpart. We also demonstrated that the isolated apical cell could develop into a small globular embryo, both in vivo and in vitro, after artificial dysfunction of the basal cell; however, these growing apical cell lineages could never generate a new suspensor. These findings suggest that the initial round of cell fate specification occurs at the two‐celled proembryo stage, and that the basal cell lineage is autonomously specified towards the suspensor, implying a polar distribution of cytoplasmic contents in the zygote. The cell fate transition of the basal cell lineage to the embryo in vivo is actually a conditional cell specification process, depending on the developmental signals from both the apical cell lineage and maternal tissues connected to the basal cell lineage.  相似文献   

9.
The reassembly of tetragonally arranged subunits in the cell wall of Lactobacillus brevis and the reattachment of the subunits to cell wall fragments were investigated by electron microscopy. The subunits dissociated from the cell wall with guanidine hydrochloride (GHCl) reassembled into the same regular array as seen in the native cell wall after dialysis against neutral buffer even in the absence of specific cations. The subunits could also reattach to the cell wall fragments from which they had been removed by treatment with GHCl, sodium dodecyl sulfate or cold trichloroacetic acid but not to those treated with hot formamide. Heterologous reattachment of the subunits occurred on cell wall fragments obtained from L. fermentum but not on those from L. plantarum or L. casei subsp. casei. On the basis of these observations and chemical analyses of the cell wall fragments, the subunits of L. brevis appeared to be bound by hydrogen bonds to a neutral polysaccharide moiety in the cell wall but not to peptidoglycan or teichoic acid.  相似文献   

10.
Cell–cell and cell–matrix adhesions are fundamental to numerous physiological processes, including angiogenesis, tumourigenesis, metastatic spreading and wound healing. We use cellular potts model to computationally predict the organisation of cells within a 3D matrix. The energy potentials regulating cell–cell (JCC) and cell–matrix (JMC) adhesive interactions are systematically varied to represent different, biologically relevant adhesive conditions. Chemotactically induced cell migration is also addressed. Starting from a cluster of cells, variations in relative cell adhesion alone lead to different cellular patterns such as spreading of metastatic tumours and angiogenesis. The combination of low cell–cell adhesion (high JCC) and high heterotypic adhesion (low JMC) favours the fragmentation of the original cluster into multiple, smaller cell clusters (metastasis). Conversely, cellular systems exhibiting high-homotypic affinity (low JCC) preserve their original configuration, avoiding fragmentation (organogenesis). For intermediate values of JCC and JMC (i.e. JCC/JMC ~ 1), tubular and corrugated structures form. Fully developed vascular trees are assembled only in systems in which contact-inhibited chemotaxis is activated upon cell contact. Also, the rate of secretion, diffusion and sequestration of chemotactic factors, cell deformability and motility do not significantly affect these trends. Further developments of this computational model will predict the efficacy of therapeutic interventions to modulate the diseased microenvironment by directly altering cell cohesion.  相似文献   

11.
In virtually all bacteria, the cell wall is crucial for mechanical integrity and for determining cell shape. Escherichia coli's rod‐like shape is maintained via the spatiotemporal patterning of cell‐wall synthesis by the actin homologue MreB. Here, we transiently inhibited cell‐wall synthesis in E. coli to generate cell‐wall‐deficient, spherical L‐forms, and found that they robustly reverted to a rod‐like shape within several generations after inhibition cessation. The chemical composition of the cell wall remained essentially unchanged during this process, as indicated by liquid chromatography. Throughout reversion, MreB localized to inwardly curved regions of the cell, and fluorescent cell wall labelling revealed that MreB targets synthesis to those regions. When exposed to the MreB inhibitor A22, reverting cells regrew a cell wall but failed to recover a rod‐like shape. Our results suggest that MreB provides the geometric measure that allows E. coli to actively establish and regulate its morphology.  相似文献   

12.
The composition and concentrations of cell wall polysaccharides and phenolic compounds were analyzed in mature stems of several Miscanthus genotypes, in comparison with switchgrass and reed (Arundo donax), and biomass characteristics were correlated with cell wall saccharification efficiency. The highest cellulose content was found in cell walls of M. sinensis‘Grosse Fontaine’ (55%) and in A. donax (47%) and lowest (about 32%) in M. sinensis‘Adagio’. There was little variation in lignin contents across M. sinensis samples (all about 22–24% of cell wall), however, Miscanthus×giganteus (M × g) cell walls contained about 28% lignin, reed – 23% and switchgrass – 26%. The highest ratios of cellulose/lignin and cellulose/xylan were in M. sinensis‘Grosse Fontaine’ across all samples tested. About the same total content of ester‐bound phenolics was found in different Miscanthus genotypes (23–27 μg/mg cell wall), while reed cell walls contained 17 μg/mg cell wall and switchgrass contained a lower amount of ester‐bound phenolics, about 15 μg/mg cell wall. Coumaric acid was a major phenolic compound ester‐bound to cell walls in plants analyzed and the ratio of coumaric acid/ferulic acid varied from 2.1 to 4.3, with the highest ratio being in M × g samples. Concentration of ether‐bound hydroxycinnamic acids varied greatly (about two‐three‐fold) within Miscanthus genotypes and was also the highest in M × g cell walls, but at a concentration lower than ester‐bound hydroxycinnamic acids. We identified four different forms of diferulic acid esters bound to Miscanthus cell walls and their concentration and proportion varied in genotypes analyzed with the 5‐5‐coupled dimer being the predominant type of diferulate in most samples tested. The contents of lignin and ether‐bound phenolics in the cell wall were the major determinants of the biomass degradation caused by enzymatic hydrolysis.  相似文献   

13.

CWM, isolated cell wall material
ECW, isolated endodermal cell walls
G, guaiacyl monomer
H, p-hydroxyphenyl monomer
HCW, isolated hypodermal cell walls
RHCW, isolated rhizodermal and hypodermal cell walls
S, syringyl monomer
XV, isolated xylem vessels

Endodermal cell walls of the three dicotyledoneous species Pisum sativum L., Cicer arietinum L. and Ricinus communis L. were isolated enzymatically and analysed for the occurrence of the biopolymers lignin and suberin. From P. sativum, endodermal cell walls in their primary state of development (Casparian strips) were isolated. Related to the dry weight, these isolates contained equal amounts of suberin (2·5%) and lignin (2·7%). In contrast, the endodermal cell walls of C. arietinum and R. communis, which were nearly exclusively in their secondary state of development, contained significantly higher proportions of suberin (10–20%) and only traces of lignin (1–2%). The results of the chemical analyses were supported by a microscopic investigation of Sudan III-stained root cross-sections, showing a Casparian strip restricted to the radial walls of the endodermis of P. sativum and well-pronounced red suberin lamellae in C. arietinum and R. communis roots. Compared with recently investigated monocotyledoneous species, higher amounts of suberin by one order of magnitude were detected with the secondary state of development of dicotyledoneous species. Furthermore, the carbohydrate and protein contents of primary (Clivia miniata Reg. and Monstera deliciosa Liebm.), secondary (C. arietinum and R. communis) and tertiary endodermal cell walls (Allium cepa L. and Iris germanica L.) were determined. The relative carbohydrate content of secondary endodermal cell walls was low (14–20%) compared with the content of primary (42–50%) and tertiary endodermal cell walls (60%), whereas the protein content of isolated endodermal cell walls was high in primary (13%) and secondary (8%) and low in tertiary endodermal cell walls (0·9–2%). The results presented here indicate that the quantitative chemical composition of primary, secondary, and tertiary endodermal cell walls varies significantly. Finally, cell wall proteins are described as an additional important constituent of endodermal cell walls, with the highest concentrations occurring in primary (Casparian strips) and secondary endodermal cell walls.  相似文献   

14.
The sugarbeet cultivar Kaumera was found to be highly susceptible to infection by the root-rot pathogens Rhizoctonia solani and Sclerotium rolfsii in the absence of salinity stress. Under this environmental condition, R. solani was more efficient than S. rolfsii in producing cell wall-degrading enzymes in infected hypocotyls. Xylanase and galactanase were most effective. The rate of cell wall degradation by R. solani was nearly 2.5 times that of S. rolfsii when cells walls of healthy hypocotyls were used as sole carbon substrate for the in vitro produced crude enzymes.Under salinity stress the pathogenicity and the performance of cell wall-degrading enzymes of R. solani and S. rolfsii varied profoundly. Pathogenicity studies showed that R. solani appeared to be more tolerant than S. rolfsii of the salinity stresses applied, and relatively more virulent to cv Kaumera. The activities of cell wall enzymes of R. solani decreased and those of S. rolfsii increased with increased salt concentration when cell wall material was used as a sole carbon source. The metabolic products produced under salinity stress by R. solani and R. solani in the cell wall amended culture media shifted the initial pH towards neutrality or slight alkalinity for R. solani and to high acidity for S. rolfsii.When model substrates were used, xyland and galactan were the most responsive substrates for degradation by the cell wall enzymes of the two fungi studied. The rate of degradation was higher for S. rolfsii than for R. solani. The excessive acidity in salt stressed S. rolfsii culture media suggested reduced activities of the enzymes involved in cell wall degradation in vivo. This may explain the decreased virulence potentialities.  相似文献   

15.
Alexandra Franz  Erich Brunner 《Fly》2017,11(4):303-311
The ease of generating genetically modified animals and cell lines has been markedly increased by the recent development of the versatile CRISPR/Cas9 tool. However, while the isolation of isogenic cell populations is usually straightforward for mammalian cell lines, the generation of clonal Drosophila cell lines has remained a longstanding challenge, hampered by the difficulty of getting Drosophila cells to grow at low densities. Here, we describe a highly efficient workflow to generate clonal Cas9-engineered Drosophila cell lines using a combination of cell pools, limiting dilution in conditioned medium and PCR with allele-specific primers, enabling the efficient selection of a clonal cell line with a suitable mutation profile. We validate the protocol by documenting the isolation, selection and verification of eight independently Cas9-edited armadillo mutant Drosophila cell lines. Our method provides a powerful and simple workflow that improves the utility of Drosophila cells for genetic studies with CRISPR/Cas9.  相似文献   

16.
麦冬与山麦冬块根形态发育的比较研究   总被引:1,自引:0,他引:1  
采用石蜡切片法,对不同发育阶段的麦冬和山麦冬块根进行了显微观察,结果表明麦冬和山麦冬块根均是在不定根的根尖部位形成,其生长发育主要依靠皮层细胞层数的增加和皮层细胞体积的增大来实现,但在麦冬与山麦冬中,两者在块根膨大中所起的作用有所不同:皮层细胞层数的增加和皮层细胞体积的增大在麦冬块根膨大的过程中均起着重要作用,而在山麦冬块根膨大的过程中则以皮层细胞层数的增加为主,皮层细胞体积的增大为辅。  相似文献   

17.
Vegetative cell division in diatoms often results in a decreased cell size of one of the daughter cells, which during long‐term cultivation may lead to a gradual decrease of the mean cell size of the culture. To restore the initial cell size, sexual reproduction is required, however, in many diatom cultures sexual reproduction does not occur. Such diatom cultures may lose their viability once the average size of the cells falls below a critical size. Cell size reduction therefore seriously restrains the long‐term stability of many diatom cultures. In order to study the bacterial influence on the size diminution process, we observed cell morphology and size distribution of the diatoms Achnanthidium minutissimum, Cymbella affiniformis and Nitzschia palea for more than two years in bacteria‐free conditions (axenic cultures) and in cultures that contain bacteria (xenic cultures). We found considerable morphological aberrations of frustule microstructures in A. minutissimum and C. affiniformis when cultivated under axenic conditions compared to the xenic cultures. These variations comprise significant cell length reduction, simplification and rounding of the frustule contour and deformation of the siliceous cell walls, features that are normally found in older cultures shortly before they die off. In contrast, the xenic cultures were well preserved and showed less cell length diminution. Our results show that bacteria may have a fundamental influence on the stability of long‐term cultures of diatoms.  相似文献   

18.
Using cell surface capture technology, the cell surface N‐glycoproteome of human‐induced pluripotent stem cell derived hepatic endoderm cells was assessed. Altogether, 395 cell surface N‐glycoproteins were identified, represented by 1273 N‐glycopeptides. This study identified N‐glycoproteins that are not predicted to be localized to the cell surface and provides experimental data that assist in resolving ambiguous or incorrectly annotated transmembrane topology annotations. In a proof‐of‐concept analysis, combining these data with other cell surface proteome datasets is useful for identifying potentially cell type and lineage restricted markers and drug targets to advance the use of stem cell technologies for mechanistic developmental studies, disease modeling, drug discovery, and regenerative medicine.  相似文献   

19.
It is postulated that cell hydration is governed by adsorption of water on cell proteins in accord with the Bradley adsorption isotherm, and that the action of a solute in the surrounding solution is to lower the vapor pressure of the solution so that cell water adsorption is decreased by moving down the Bradley isotherm. From these concepts, it is derived that cell volume (V) should be related to solute concentration (x) by the equationV=−E log10 x+F whereE andF are constants which are independent of type of solute. For a non-adsorbed solute this agrees well with experimental data. For solutes which are adsorbed by cell proteins, a correction in the above equation may be necessary at higher solute concentrations, which is shown to be compatible with various experimental data. The types of experiments which are generally used to support the osmotic pressure theory of cell hydration agree equally well with the adsorption theory. The virtue of the adsorption theory is that, unlike the osmotic pressure theory of cell swelling, it is compatible with permeability of the cell membrane to solutes, which has been experimentally observed for various solutes. The opinions and conclusions contained in this report are those of the author. They are not to be construed as necessarily reflecting the views or the endorsement of the Navy Department.  相似文献   

20.
Glugea stephani-infecled submucosal cells of laboratory-reared winter flounder, Pseudopleuronectes americanus, change to unique giant cell xenomas. These cells hypertrophy while the intracellular Glugea propagate to high numbers in the cytoplasm and eventually overrun the host cell. The xenomas slowly reach 20-25 muml;m (at 17°C) by day 10 after parasite invasion. These xenomas (eight often examined by electron microscopy) are coated with a mucus-like envelope onto which is attached a layer of endothelial ceils. The 10-day xenomas display (a) host cell endonuclear polyploidization and amitosis, (b) limited parasite growth and reproduction, and (c) a host cell cytoplasm structure similar to that seen in undifferentiated phagocytes. Glugea parasites do not induce obvious cell degenerative effects in 10-day xenomas; the 20-day xenomas are hypertrophied to 70-100 m?m. These cells are characterized by (a) a host cell component denuded of endoplasmic reticulum and phagosome membrane, (b) a reduction in host cell ribosomes and the disappearance of host cell cytoskeletal assemblages, including microtubules, and (c) a significant increase in vegetative Glugea within xenomas. Evidence indicates cytoplasmic calcium of the host cell xenoma is perturbed by the intracellular Glugea; the alterations in the host cell calcium domains may be a big factor in the induction of the block of mitosis in the host cell and in the disruption in its cytoskeletal controls.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号