首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Gene expression data analysis   总被引:33,自引:0,他引:33  
Brazma A  Vilo J 《FEBS letters》2000,480(1):17-24
Microarrays are one of the latest breakthroughs in experimental molecular biology, which allow monitoring of gene expression for tens of thousands of genes in parallel and are already producing huge amounts of valuable data. Analysis and handling of such data is becoming one of the major bottlenecks in the utilization of the technology. The raw microarray data are images, which have to be transformed into gene expression matrices--tables where rows represent genes, columns represent various samples such as tissues or experimental conditions, and numbers in each cell characterize the expression level of the particular gene in the particular sample. These matrices have to be analyzed further, if any knowledge about the underlying biological processes is to be extracted. In this paper we concentrate on discussing bioinformatics methods used for such analysis. We briefly discuss supervised and unsupervised data analysis and its applications, such as predicting gene function classes and cancer classification. Then we discuss how the gene expression matrix can be used to predict putative regulatory signals in the genome sequences. In conclusion we discuss some possible future directions.  相似文献   

2.
Gene expression data analysis   总被引:2,自引:0,他引:2  
Microarrays are one of the latest breakthroughs in experimental molecular biology, which allow monitoring of gene expression for tens of thousands of genes in parallel and are already producing huge amounts of valuable data. Analysis and handling of such data is becoming one of the major bottlenecks in the utilization of the technology. The raw microarray data are images, which have to be transformed into gene expression matrices, tables where rows represent genes, columns represent various samples such as tissues or experimental conditions, and numbers in each cell characterize the expression level of the particular gene in the particular sample. These matrices have to be analyzed further if any knowledge about the underlying biological processes is to be extracted. In this paper we concentrate on discussing bioinformatics methods used for such analysis. We briefly discuss supervised and unsupervised data analysis and its applications, such as predicting gene function classes and cancer classification as well as some possible future directions.  相似文献   

3.
The DNA microarray technology has arguably caught the attention of the worldwide life science community and is now systematically supporting major discoveries in many fields of study. The majority of the initial technical challenges of conducting experiments are being resolved, only to be replaced with new informatics hurdles, including statistical analysis, data visualization, interpretation, and storage. Two systems of databases, one containing expression data and one containing annotation data are quickly becoming essential knowledge repositories of the research community. This present paper surveys several databases, which are considered "pillars" of research and important nodes in the network. This paper focuses on a generalized workflow scheme typical for microarray experiments using two examples related to cancer research. The workflow is used to reference appropriate databases and tools for each step in the process of array experimentation. Additionally, benefits and drawbacks of current array databases are addressed, and suggestions are made for their improvement.  相似文献   

4.
Serial analysis of gene expression (SAGE) technology produces large sets of interesting genes that are difficult to analyze directly. Bioinformatics tools are needed to interpret the functional information in these gene sets. We present an interactive web-based tool, called Gene Class, which allows functional annotation of SAGE data using the Gene Ontology (GO) database. This tool performs searches in the GO database for each SAGE tag, making associations in the selected GO category for a level selected in the hierarchy. This system provides user-friendly data navigation and visualization for mapping SAGE data onto the gene ontology structure. This tool also provides graphical visualization of the percentage of SAGE tags in each GO category, along with confidence intervals and hypothesis testing.  相似文献   

5.
PrepMS: TOF MS data graphical preprocessing tool   总被引:1,自引:0,他引:1  
We introduce a simple-to-use graphical tool that enables researchers to easily prepare time-of-flight mass spectrometry data for analysis. For ease of use, the graphical executable provides default parameter settings, experimentally determined to work well in most situations. These values, if desired, can be changed by the user. PrepMS is a stand-alone application made freely available (open source), and is under the General Public License (GPL). Its graphical user interface, default parameter settings, and display plots allow PrepMS to be used effectively for data preprocessing, peak detection and visual data quality assessment. AVAILABILITY: Stand-alone executable files and Matlab toolbox are available for download at: http://sourceforge.net/projects/prepms  相似文献   

6.
EEG data acquisition and preprocessing by microcomputer satellite system   总被引:1,自引:0,他引:1  
Recent development in computer technology allows already medium scale EEG data processing to be performed within the clinical neurophysiology department, if a fast minicomputer with adequate mass storage and graphical output facilities is used. Data acquisition, however, should be delegated to a microcomputer which also should take over as much preprocessing as possible. A system is presented, where one or several microcomputer-based satellite units perform analog-digital conversion, Fourier transformation (FFT), calculation of power spectra and crossproducts, as well as event related averaging or other preprocessing procedures. The units are connected to a fast central minicomputer, where a supervisor program loads the microprocessors with their programs, supervises their activity, receives preprocessed data and activates appropriate postprocessing programs to produce the final results.  相似文献   

7.
We propose a new method for tumor classification from gene expression data, which mainly contains three steps. Firstly, the original DNA microarray gene expression data are modeled by independent component analysis (ICA). Secondly, the most discriminant eigenassays extracted by ICA are selected by the sequential floating forward selection technique. Finally, support vector machine is used to classify the modeling data. To show the validity of the proposed method, we applied it to classify three DNA microarray datasets involving various human normal and tumor tissue samples. The experimental results show that the method is efficient and feasible.  相似文献   

8.
Wave-spec is a pre-processing package for mass spectrometry (MS) data. The package includes several novel algorithms that overcome conventional difficulties with the pre-processing of such data. In this application note, we demonstrate step-by-step use of this package on a real-world MALDI dataset. AVAILABILITY: The package can be downloaded at http://www.vicc.org/biostatistics/supp.php. A shared mailbox (wave-spec@vanderbilt.edu) also is available for questions regarding application of the package.  相似文献   

9.

Background  

Surface enhanced laser desorption/ionization time-of-flight mass spectrometry (SELDI) is a proteomics tool for biomarker discovery and other high throughput applications. Previous studies have identified various areas for improvement in preprocessing algorithms used for protein peak detection. Bottom-up approaches to preprocessing that emphasize modeling SELDI data acquisition are promising avenues of research to find the needed improvements in reproducibility.  相似文献   

10.

Background

Next-generation sequencing (NGS) has yielded an unprecedented amount of data for genetics research. It is a daunting task to process the data from raw sequence reads to variant calls and manually processing this data can significantly delay downstream analysis and increase the possibility for human error. The research community has produced tools to properly prepare sequence data for analysis and established guidelines on how to apply those tools to achieve the best results, however, existing pipeline programs to automate the process through its entirety are either inaccessible to investigators, or web-based and require a certain amount of administrative expertise to set up.

Findings

Advanced Sequence Automated Pipeline (ASAP) was developed to provide a framework for automating the translation of sequencing data into annotated variant calls with the goal of minimizing user involvement without the need for dedicated hardware or administrative rights. ASAP works both on computer clusters and on standalone machines with minimal human involvement and maintains high data integrity, while allowing complete control over the configuration of its component programs. It offers an easy-to-use interface for submitting and tracking jobs as well as resuming failed jobs. It also provides tools for quality checking and for dividing jobs into pieces for maximum throughput.

Conclusions

ASAP provides an environment for building an automated pipeline for NGS data preprocessing. This environment is flexible for use and future development. It is freely available at http://biostat.mc.vanderbilt.edu/ASAP.  相似文献   

11.
Many different methods exist for pattern detection in gene expression data. In contrast to classical methods, biclustering has the ability to cluster a group of genes together with a group of conditions (replicates, set of patients or drug compounds). However, since the problem is NP-complex, most algorithms use heuristic search functions and therefore might converge towards local maxima. By using the results of biclustering on discrete data as a starting point for a local search function on continuous data, our algorithm avoids the problem of heuristic initialization. Similar to OPSM, our algorithm aims to detect biclusters whose rows and columns can be ordered such that row values are growing across the bicluster's columns and vice-versa. Results have been generated on the yeast genome (Saccharomyces cerevisiae), a human cancer dataset and random data. Results on the yeast genome showed that 89% of the one hundred biggest non-overlapping biclusters were enriched with Gene Ontology annotations. A comparison with OPSM and ISA demonstrated a better efficiency when using gene and condition orders. We present results on random and real datasets that show the ability of our algorithm to capture statistically significant and biologically relevant biclusters.  相似文献   

12.
13.
The Gene Expression Omnibus (GEO) project was initiated in response to the growing demand for a public repository for high-throughput gene expression data. GEO provides a flexible and open design that facilitates submission, storage and retrieval of heterogeneous data sets from high-throughput gene expression and genomic hybridization experiments. GEO is not intended to replace in house gene expression databases that benefit from coherent data sets, and which are constructed to facilitate a particular analytic method, but rather complement these by acting as a tertiary, central data distribution hub. The three central data entities of GEO are platforms, samples and series, and were designed with gene expression and genomic hybridization experiments in mind. A platform is, essentially, a list of probes that define what set of molecules may be detected. A sample describes the set of molecules that are being probed and references a single platform used to generate its molecular abundance data. A series organizes samples into the meaningful data sets which make up an experiment. The GEO repository is publicly accessible through the World Wide Web at http://www.ncbi.nlm.nih.gov/geo.  相似文献   

14.
Microarray technology facilitates the monitoring of the expression levels of thousands of genes over different experimental conditions simultaneously. Clustering is a popular data mining tool which can be applied to microarray gene expression data to identify co-expressed genes. Most of the traditional clustering methods optimize a single clustering goodness criterion and thus may not be capable of performing well on all kinds of datasets. Motivated by this, in this article, a multiobjective clustering technique that optimizes cluster compactness and separation simultaneously, has been improved through a novel support vector machine classification based cluster ensemble method. The superiority of MOCSVMEN (MultiObjective Clustering with Support Vector Machine based ENsemble) has been established by comparing its performance with that of several well known existing microarray data clustering algorithms. Two real-life benchmark gene expression datasets have been used for testing the comparative performances of different algorithms. A recently developed metric, called Biological Homogeneity Index (BHI), which computes the clustering goodness with respect to functional annotation, has been used for the comparison purpose.  相似文献   

15.
An introductory review of hardware aspects of on-line experimental data processing reveals that the combination of a specialized (hard-wired) preprocessing unit coupled with a programmable laboratory computer is an optimal set up for an electrophysiological laboratory. The paper deals with a proposed modular system, which makes the assembly of a large number of different preprocessing units possible. Some practical applications of the preprocessing units coupled with a LINC (D.E.C.) computer are presented in conclusion.  相似文献   

16.
17.
MOTIVATION: The topology and function of gene regulation networks are commonly inferred from time series of gene expression levels in cell populations. This strategy is usually invalid if the gene expression in different cells of the population is not synchronous. A promising, though technically more demanding alternative is therefore to measure the gene expression levels in single cells individually. The inference of a gene regulation network requires knowledge of the gene expression levels at successive time points, at least before and after a network transition. However, owing to experimental limitations a complete determination of the precursor state is not possible. RESULTS: We investigate a strategy for the inference of gene regulatory networks from incomplete expression data based on dynamic Bayesian networks. This permits prediction of the number of experiments necessary for network inference depending on parameters including noise in the data, prior knowledge and limited attainability of initial states. Our strategy combines a gradual 'Partial Learning' approach based solely on true experimental observations for the network topology with expectation maximization for the network parameters. We illustrate our strategy by extensive computer simulations in a high-dimensional parameter space in a simulated single-cell-based example of hematopoietic stem cell commitment and in random networks of different sizes. We find that the feasibility of network inferences increases significantly with the experimental ability to force the system into different initial network states, with prior knowledge and with noise reduction. AVAILABILITY: Source code is available under: www.izbi.uni-leipzig.de/services/NetwPartLearn.html SUPPLEMENTARY INFORMATION: Supplementary Data are available at Bioinformatics online.  相似文献   

18.

Introduction

The metabolome of a biological system is affected by multiple factors including factor of interest (e.g. metabolic perturbation due to disease) and unwanted factors or factors which are not primarily the focus of the study (e.g. batch effect, gender, and level of physical activity). Removal of these unwanted data variations is advantageous, as the unwanted variations may complicate biological interpretation of the data.

Objectives

We aim to develop a new unwanted variations elimination (UVE) method called clustering-based unwanted residuals elimination (CURE) to reduce metabolic variation caused by unwanted/hidden factors in metabolomic data.

Methods

A mean-centered metabolomic dataset can be viewed as a combination of a studied factor matrix and a residual matrix. The CURE method assumes that the residual should be normally distributed if it only contains inter-individual variation. However, if the residual forms multiple clusters in feature subspace of principal components analysis or partial least squares discriminant analysis, the residual may contain variation due to unwanted factors. This unwanted variation is removed by doing K-means data clustering and removal of means for each cluster from the residuals. The process is iterated until the residual no longer forms multiple clusters in feature subspace.

Results

Three simulated datasets and a human metabolomic dataset were used to demonstrate the performance of the proposed CURE method. CURE was found able to remove most of the variations caused by unwanted factors, while preserving inter-individual variation between samples.

Conclusion

The CURE method can effectively remove unwanted data variation, and can serve as an alternative UVE method for metabolomic data.
  相似文献   

19.
The response of cells to extracellular signals usually requires altered expression of many genes, possibly including several distinct metabolic pathways. In some cases, only a subset of genes involved in such responses are known, which requires techniques to analyze changes in the expression of multiple genes, both known and unknown. Three techniques, two-dimensional gel electrophoresis, differential display, and gene discovery arrays, provide opportunities for measuring changes in gene expression levels, as well as for identifying novel gene products.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号