首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
Mighty Piwis defend the germline against genome intruders   总被引:13,自引:0,他引:13  
O'Donnell KA  Boeke JD 《Cell》2007,129(1):37-44
Piwis are a germline-specific subclass of the Argonaute family of RNA interference (RNAi) effector proteins that are associated with a recently discovered group of small RNAs (piRNAs). Recent studies in Drosophila and zebrafish directly implicate Piwi proteins in piRNA biogenesis to maintain transposon silencing in the germline genome (Brennecke et al., 2007; Gunawardane et al., 2007; Houwing et al., 2007). This function may be conserved in mice as loss of Miwi2, a mouse Piwi homolog, leads to germline stem cell and meiotic defects correlated with increased transposon activity (Carmell et al., 2007).  相似文献   

6.
The centromere is an essential chromosome site at which the kinetochore forms and loads proteins needed for faithful segregation during the cell cycle and meiosis(Houben et al., 1999;Cleveland et al.,2003;Ma et al.,2007;Birchler and Han,2009).Centromere specific sequences such as tandem repeats or transposable elements evolve quickly both within and between the species but have conserved kinetochore proteins(Henikoff and Furuyama,2010).The universal feature  相似文献   

7.
8.
9.
In this issue of Molecular Cell, Sampath et al. show a lysine methylase exhibits substrate promiscuity and variability in degree of product methylation (Sampath et al., 2007). Two lysines are found to be automethylated in G9a, and one is H3K9-like and can establish a docking site for HP1 chromodomain.  相似文献   

10.
Summary Of the molecular species of proteins associated with the nucleoids of Escherichia coli cells, those with relatively high affinity to bind to DNA were isolated and characterized. Seven classes of nucleoid proteins with molecular weights of 9,000, 17,000 (two molecular species), 22,000, 24,000, 27,000 and 28,000 were isolated at more than 90% purity or were partially purified. On the basis of its amino acid composition and other chemical properties, the 9,000 dalton protein was identified as HLP II (or HU protein or BH2) (Pettijohn 1982: Rouvière-Yaniv and Gros 1975; Varshavsky et al. 1978). The 17 K protein consisted of two molecular species and one of these, 17 K (a) protein, seemed to be identical with HLPI (or protein 1 or BH1) reported previously (Pettijohn 1982; Varshavsky et al. 1977; Varshavsky et al. 1978). The 26 K protein was identical to the 22 K protein (Kishi et al. 1982). The 27 K protein showed immunological cross-reactivity with the antibody for histone H2A and was thus identified as the H protein reported previously (Hübscher et al. 1980). Two basic proteins, 9 K and 17 K(a), showed relatively high binding affinities to DNA, while the 28 K protein showed moderate binding affinity. The biological significance of these nucleoid proteins, which constitute a family of proteins participating in formation of the nucleoid structure, is discussed.  相似文献   

11.
12.
Sharov AA  Ko MS 《Cell Stem Cell》2007,1(3):237-238
In this issue of Cell Stem Cell, Pan et al. (2007) and Zhao et al. (2007) report genome-wide histone H3 trimethylations at lysines 4 and 27 in human embryonic stem (ES) cells. Similar gene sets arise via different experimental systems, advancing our understanding of stem cell epigenetics.  相似文献   

13.
14.
15.
It is now widely recognized that intrinsically unstructured (or disordered) proteins (IUPs or IDPs) are found in organisms from all kingdoms of life. In eukaryotes, IUPs are highly abundant and perform a wide range of biological functions, including regulation and signaling. Despite an increased level of interest in understanding the structural biology of IUPs and IDPs, questions regarding the mechanisms through which disordered proteins perform their biological function(s) remain. In other words, what are the relationships between disorder and function for IUPs? There are several excellent reviews that discuss the structural properties of IUPs and IDPs since 2005 [Receveur-Brechot, V., et al. (2006) Proteins 62, 24-45; Mittag, T., and Forman-Kay, J. D. (2007) Curr. Opin. Struct. Biol. 17, 3-14; Dyson, H. J., and Wright, P. E. (2005) Nat. Rev. Mol. Cell Biol. 6, 197-208]. Here, we briefly review general concepts pertaining to IUPs and then discuss our structural, biophysical, and biochemical studies of two IUPs, p21 and p27, which regulate the mammalian cell division cycle by inhibiting cyclin-dependent kinases (Cdks). Some segments of these two proteins are partially folded in isolation, and they fold further upon binding their biological targets. Interestingly, some portions of p27 remain flexible after binding to and inhibiting the Cdk2-cyclin A complex. This residual flexibility allows otherwise buried tyrosine residues within p27 to be phosphorylated by non-receptor tyrosine kinases (NRTKs). Tyrosine phosphorylation relieves kinase inhibition, triggering Cdk2-mediated phosphorylation of a threonine residue within the flexible C-terminus of p27. This, in turn, marks p27 for ubiquitination and proteasomal degradation, unleashing full Cdk2 activity which drives cell cycle progression. p27, thus, constitutes a conduit for transmission of proliferative signals via post-translational modifications. The term "conduit" is used here to connote a means of transmission of molecular signals which, in the case of p27, correspond to tyrosine and threonine phosphorylation, ubiquitination, and, ultimately, proteolytic degradation. Transmission of these multiple signals is enabled by the inherent flexibility of p27 which persists even after tight binding to the Cdk2-cyclin A complex. Importantly, activation of the p27 signaling conduit by oncogenic NRTKs contributes to tumorigenesis in some human cancers, including chronic myelogenous leukemia (CML) [Grimmler, M., et al. (2007) Cell 128, 269-280] and breast cancer [Chu, I., et al. (2007) Cell 128, 281-294]. Other IUPs may participate in conceptually similar molecular signaling conduits, and dysregulation of these putative conduits may contribute to other human diseases. Detailed study of these IUPs, both alone and within functional complexes, is required to test these hypotheses and to more fully understand the relationships between protein disorder and biological function.  相似文献   

16.
17.
Smac mimetics and TNFalpha: a dangerous liaison?   总被引:2,自引:0,他引:2  
Wu H  Tschopp J  Lin SC 《Cell》2007,131(4):655-658
Inhibitor of apoptosis proteins (IAPs) such as XIAP, cIAP1, and cIAP2 are upregulated in many cancer cells. It has been thought that small-molecule mimetics of Smac, an endogenous IAP antagonist, might potentiate apoptosis in cancer cells by promoting caspase activation. However, three recent papers, two in Cell (Vince et al., 2007; Varfolomeev et al., 2007) and one in Cancer Cell (Petersen et al., 2007), now report that Smac mimetics primarily kill cancer cells via a different mechanism, the induction of autoubiquitination and degradation of cIAPs, which culminates in TNFalpha-mediated cell death.  相似文献   

18.
19.
In yeast, OT consists of nine different subunits, all of which contain one or more predicted transmembrane segments. In yeast, five of these proteins are encoded by essential genes, Swp1p, Wbp1p, Ost2p, Ost1p and Stt3p. Four others are not essential Ost3p, Ost4p, Ost5p, Ost6p. All yeast OT subunits have been cloned and sequenced (Kelleher et al., 1992; 2003; Kelleher & Gilmore, 1997; Kumar et al., 1994; 1995; Breuer & Bause, 1995) and the structure of one of them, Ost4p, has been solved by NMR (Zubkov et al., 2004). Very recently, the preliminary crystal structure of the lumenal domain of an archaeal Stt3p homolog has been reported (Mayumi et al., 2007). Homologs of all OT subunits have been identified in higher eukaryotic organisms (Kelleher et al., 1992; 2003; Kumar et al., 1994; Kelleher & Gilmore, 1997).  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号