首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Double-strand break repair models of genetic recombination propose that a double-strand break is introduced into an otherwise intact DNA and that the break is then repaired by copying a homologous DNA segment. Evidence for these models has been found among lambdoid phages and during yeast meiosis. In an earlier report, we demonstrated such repair of a preformed double-strand break by the Escherichia coli RecE pathway. Here, our experiments with plasmids demonstrate that such reciprocal or conservative recombination (two parental DNAs resulting in two progeny DNAs) is frequent at a double-strand break even when there exists the alternative route of nonreciprocal or nonconservative recombination (two parental DNAs resulting in only one progeny DNA). The presence of a long heterologous DNA at the double-strand break, however, resulted in a shift from the conservative (two-progeny) mode to the nonconservative (one-progeny) mode. The product is a DNA free from the heterologous insert containing recombinant flanking sequences. The potential ability of the homology-dependent double-strand break repair reaction to detect and eliminate heterologous inserts may have contributed to the evolution of homologous recombination, meiosis and sexual reproduction.  相似文献   

2.
Typing phages for Salmonella and the prophages of their typical propagation strains were analyzed at the DNA level. Most of them belong to the P22 branch of the lambdoid phages. Acquisition of new plating properties of the typing phages by propagation in particular strains can be due to different host specific modifications of the DNA or to recombination events with residing prophages which are reflected by changes in the respective DNA restriction patterns. It is concluded that the actually available set of typing phages is a historically unique combination of strains.  相似文献   

3.
4.
Phages, like many parasites, tend to have small genomes and may encode autonomous functions or manipulate those of their hosts''. Recombination functions are essential for phage replication and diversification. They are also nearly ubiquitous in bacteria. The E. coli genome encodes many copies of an octamer (Chi) motif that upon recognition by RecBCD favors repair of double strand breaks by homologous recombination. This might allow self from non-self discrimination because RecBCD degrades DNA lacking Chi. Bacteriophage Lambda, an E. coli parasite, lacks Chi motifs, but escapes degradation by inhibiting RecBCD and encoding its own autonomous recombination machinery. We found that only half of 275 lambdoid genomes encode recombinases, the remaining relying on the host''s machinery. Unexpectedly, we found that some lambdoid phages contain extremely high numbers of Chi motifs concentrated between the phage origin of replication and the packaging site. This suggests a tight association between replication, packaging and RecBCD-mediated recombination in these phages. Indeed, phages lacking recombinases strongly over-represent Chi motifs. Conversely, phages encoding recombinases and inhibiting host recombination machinery select for the absence of Chi motifs. Host and phage recombinases use different mechanisms and the latter are more tolerant to sequence divergence. Accordingly, we show that phages encoding their own recombination machinery have more mosaic genomes resulting from recent recombination events and have more diverse gene repertoires, i.e. larger pan genomes. We discuss the costs and benefits of superseding or manipulating host recombination functions and how this decision shapes phage genome structure and evolvability.  相似文献   

5.
The gene regulatory circuitry of phage lambda is among the best-understood circuits. Much of the circuitry centres around the immunity region, which includes genes for two repressors, CI and Cro, and their cis-acting sites. Related phages, termed lambdoid phages, have different immunity regions, but similar regulatory circuitry and genome organization to that of lambda, and show a mosaic organization, arising by recombination between lambdoid phages. We sequenced the immunity regions of several wild phages with the immunity specificity of lambda, both to determine whether natural variation exists in regulation, and to analyse conservation and variability in a region rich in well-studied regulatory elements. CI, Cro and their cis-acting sites are almost identical to those in lambda, implying that regulatory mechanisms controlled by the immunity region are conserved. A segment adjacent to one of the operator regions is also conserved, and may be a novel regulatory element. In most isolates, different alleles of two regulatory proteins (N and CII) flank the immunity region; possibly the lysis-lysogeny decision is more variable among isolates. Extensive mosaicism was observed for several elements flanking the immunity region. Very short sequence elements or microhomologies were also identified. Our findings suggest mechanisms by which fine-scale mosaicism arises.  相似文献   

6.
Escherichia coli mutants which block the development of a number of lambdoid phages, particularly, phi m173 and phi 80 were selected. These mutants have different phenotypes, being resistant to different groups of lambdoid phages. There are also differences between new mutants and gro mutants of E. coli studied earlier. The results obtained support the suggestion that no replication of different lambdoid phages takes place in these mutants.  相似文献   

7.
We previously proposed that lambdoid phages change their insertion specificity by adapting their integrases to sequences found in secondary attachment sites. To test this model, we quantified recombination between partners that carried sequences from secondary attachment sites catalyzed by wild-type and by mutant integrases with altered specificities. The results are consistent with the model, and indicate differential core site usage in excision and integration.  相似文献   

8.
In enterohemorrhagic Escherichia coli, Shiga toxin is produced by lysogenic prophages. We have isolated the prophage VT2-Sa that is responsible for production of Shiga toxin type 2 protein, and determined the complete nucleotide sequence of this phage DNA. The entire DNA sequence consisted of 60,942 bp, exhibiting marked similarity to the 933W phage genome. However, several differences were observed in the immunity and replication regions, where cI, cII, cIII, N, cro, O, and P genes were present: Predicted amino acid sequences of N, cI, cro, O and P in the VT2-Sa genome did not show significant similarity to the counterparts of the 933W genome; however its cI showed higher similarity to lambda. Furthermore, O and P closely resembled those of phage HK022. These observations suggest that the various degrees of homology observed in the immunity and replication regions of VT2-Sa could have resulted from frequent recombination events among the lambdoid phages, and that these regions play a key role as a functional unit for phage propagation in competition with other lambdoid phages.  相似文献   

9.
Recent studies have generated interest in the use of the homologous recombination system of bacteriophage lambda for genetic engineering. The system, called Red, consists primarily of three proteins: lambda exonuclease, which processively digests the 5'-ended strand of a dsDNA end; beta protein, which binds to ssDNA and promotes strand annealing; and gamma protein, which binds to the bacterial RecBCD enzyme and inhibits its activities. These proteins induce a 'hyper-rec' state in Escherichia coli and other bacteria, in which recombination events between DNA species with as little as 40 bp of shared sequence occur at high frequency. Red-mediated recombination in the hyper-rec bacterium proceeds via a number of different pathways, and with the involvement of different sets of bacterial proteins, depending in part on the nature of the recombining DNA species. The role of high-frequency double-strand break repair/recombination in the life cycle of the lambdoid phages is discussed.  相似文献   

10.
A study was made of several bacteriophages (including phages U2 and LB related to T-even phages of Escherichia coli) that grow both on E. coli K12 and on some Salmonella strains. Such phages were termed ambivalent. T-even ambivalent phages (U2 and LB) are rare and have a limited number of hosts among Salmonella strains. U2 and LB are similar to canonical E. coli-specific T-even phages in morphological type and size of the phage particle and in reaction with specific anti-T4 serum. Phages U2 and LB have identical sets of structural proteins, some of which are similar in size to structural proteins of phages T2 and T4. DNA restriction patterns of phages U2 and LB differ from each other and from those of T2 and T4. Still, DNAs of all four phages have considerable homology. Unexpectedly, phages U2 and LB grown on Salmonella bungori were unstable during centrifugation in a CsCl gradient. Ambivalent bacteriophages were found in species other than T-even phages and were similar in morphotype to lambdoid and other E. coli phages. One of the ambivalent phages was highly similar to well-known Felix01, which is specific for Salmonella. Ambivalent phages can be used to develop a new set for phage typing in Salmonella. An obvious advantage is that ambivalent phages can be reproduced in the E. coli K12 laboratory strain, which does not produce active temperate phages. Consequently, the resulting typing phage preparation is devoid of an admixture of temperate phages, which are common in Salmonella. The presence of temperate phages in phage-typing preparations may cause false-positive results in identifying specific Salmonella strains isolated from the environment or salmonellosis patients. Ambivalent phages are potentially useful for phage therapy and prevention of salmonellosis in humans and animals.  相似文献   

11.
Shiga toxin-producing Escherichia coli (STEC) strains are food-borne pathogens whose ability to produce Shiga toxin (Stx) is due to integration of Stx-encoding lambdoid bacteriophages. These Stx phages are both genetically and morphologically heterogeneous, and here we report the design and validation of a PCR-based multilocus typing scheme. PCR primer sets were designed for database variants of a range of key lambdoid bacteriophage genes and applied to control phages and 70 stx+ phage preparations induced from a collection of STEC isolates. The genetic diversity residing within these populations could be described, and observations were made on the heterogeneity of individual gene targets, including the unexpected predominance of short-tailed phages with a highly conserved tail spike protein gene. Purified Stx phages can be profiled using this scheme, and the lambdoid phage-borne genes in induced STEC preparations can be identified as well as those residing in the noninducible prophage complement. The ultimate goal is to enable robust and realistically applicable epidemiological studies of Stx phages and their traits. The impact of Stx phage on STEC epidemiology is currently unknown.  相似文献   

12.
Three lactic streptococcal bacteriophages were compared with one another by electron microscopic analysis of heteroduplex DNA molecules. The phages were almost identical in morphology and had been isolated over a period of 10 years on different strains of Streptococcus cremoris from cheese plants situated in different parts of New Zealand. There was a high degree of homology between the DNAs, in agreement with Southern blot hybridization data reported earlier. There were, however, distinct regions of nonhomology, mostly between 0.45 and 1.71 kilobases in length, suggestive of the occurrence of block recombination events. A deletion of 2.23 kilobases in the two more recently isolated phages, or an insertion in the first isolate, was found. All three phage DNAs showed differences in restriction endonuclease cleavage sites. Alignment of the restriction endonuclease maps with the heteroduplex maps showed that differences in cleavage sites occurred most frequently in regions of nonhomology. However, differences in cleavage sites in regions of apparent homology were also detected, indicating that point mutations may have occurred in addition to block recombination events.  相似文献   

13.
Genomes of newly isolated Salmonella phages were analysed by comparison of their EcoRI restriction patterns and by hybridization. Characteristic hybridization probes from reference phages P22, ES18 and E. coli phage lambda were chosen. Four probes selected from the lysis region examined the dispersal of the lambdoid lysis genes. Other probes characterized were the replication genes and part of the structural genes. The complex immunity region was investigated by means of hybridization as well as biological tests. The results showed the relationship of the isolated phages to the P22 branch of the lambdoid phages and revealed their modular genome organization consisting of different proportions of P22-related sequences. DNA restriction patterns of phages released from Salmonella strains sampled in limited geographical areas were significantly less heterogeneous than those of phages released from the worldwide sampled SARA collection. The use of prophage restriction patterns as a tool for the typing of Salmonellae to support the epidemiologic classification of pathogenic strains is discussed.  相似文献   

14.
Three lactic streptococcal bacteriophages were compared with one another by electron microscopic analysis of heteroduplex DNA molecules. The phages were almost identical in morphology and had been isolated over a period of 10 years on different strains of Streptococcus cremoris from cheese plants situated in different parts of New Zealand. There was a high degree of homology between the DNAs, in agreement with Southern blot hybridization data reported earlier. There were, however, distinct regions of nonhomology, mostly between 0.45 and 1.71 kilobases in length, suggestive of the occurrence of block recombination events. A deletion of 2.23 kilobases in the two more recently isolated phages, or an insertion in the first isolate, was found. All three phage DNAs showed differences in restriction endonuclease cleavage sites. Alignment of the restriction endonuclease maps with the heteroduplex maps showed that differences in cleavage sites occurred most frequently in regions of nonhomology. However, differences in cleavage sites in regions of apparent homology were also detected, indicating that point mutations may have occurred in addition to block recombination events.  相似文献   

15.
To study the mechanism of spontaneous and UV-induced illegitimate recombination, we examined the formation of theλbio specialized transducing phage inEscherichia coli. Because mostλbio transducing phages have double defects in thered andgam genes and have the capacity to form a plaque on anE. coli P2 lysogen (Spi? phenotype), we selectedλbio transducing phage by their Spi? phenotype, rather than using thebio marker. We determined sequences of recombination junctions ofλbio transducing phages isolated with or without UV irradiation and deduced sequences of parental recombination sites. The recombination sites were widely distributed onE. coli bio andλ DNAs, except for a hotspot which accounts for 57% of UV-inducedλbio transducing phages and 77% of spontaneously inducedλbio transducing phages. The hotspot sites onE. coli andλ DNAs shared a short homology of 9 bp. In addition, we detected direct repeat sequences of 8 by within and near both thebio andλ hotspots. ArecA mutation did not affect the frequency of the recombination at the hotspot, indicating that this recombination is not a variant ofrecA-dependent homologous recombination. We discuss a model in which the short homology as well as the direct repeats play essential roles in illegitimate recombination at the hotspot.  相似文献   

16.
Phage 16-3 is a temperate phage of Rhizobium meliloti 41 which integrates its genome with high efficiency into the host chromosome by site-specific recombination through DNA sequences of attB and attP. Here we report the identification of two phage-encoded genes required for recombinations at these sites: int (phage integration) and xis (prophage excision). We concluded that Int protein of phage 16-3 belongs to the integrase family of tyrosine recombinases. Despite similarities to the cognate systems of the lambdoid phages, the 16-3 int xis att system is not active in Escherichia coli, probably due to requirements for host factors that differ in Rhizobium meliloti and E. coli. The application of the 16-3 site-specific recombination system in biotechnology is discussed.  相似文献   

17.
18.
Excision of Tn1545 and related conjugative transposons of Gram-positive bacteria occurs by reciprocal site-specific recombination between non-homologous regions of the transposon-target junctions. Excisive recombination requires two transposon-encoded proteins designated Xis-Tn and Int-Tn. We have shown that, following excision, Tn1545 is a circular structure with ends separated by either of the two hexanucleotides that were present at the transposon-target junctions. Using a trans-complementation assay, we have demonstrated that Int-Tn is able to catalyse in vivo integration of a circular intermediate of Tn1545 defective for integration and excision. comparison of integration sites suggests that limited sequence homology at the vicinity of the recombining sites is required for integration of the element. These data support the hypothesis that the integration/excision systems of conjugative transposons from Gram-positive cocci and of lambdoid phages from Gram-negative bacilli have evolved from a common ancestor.  相似文献   

19.
The genomes of temperate Salmonella typhimurium phages P22 and L share approximately 69% homology, as measured by DNA heteroduplex analysis. Alignment of the P22/L heteroduplex molecules with a P22 physical map places most of this homology between the capsid genes and genes in the vicinity of the prophage attachment sites. The degree of genetic relatedness between these phages and the lambdoid phages is also discussed.  相似文献   

20.
The argU (dnaY) gene of Escherichia coli is located, in clockwise orientation, at 577.5 kilobases (kb) on the chromosome physical map. There was a cryptic prophage spanning the 2 kb immediately downstream of argU that consisted of sequences similar to the phage P22 int gene, a portion of the P22 xis gene, and portions of the exo, P, and ren genes of bacteriophage lambda. This cryptic prophage was designated DLP12, for defective lambdoid prophage at 12 min. Immediately clockwise of DLP12 was the IS3 alpha 4 beta 4 insertion element. The argU and DLP12 int genes overlapped at their 3' ends, and argU contained sequence homologous to a portion of the phage P22 attP site. Additional homologies to lambdoid phages were found in the 25 kb clockwise of argU. These included the cryptic prophage qsr' (P. J. Highton, Y. Chang, W. R. Marcotte, Jr., and C. A. Schnaitman, J. Bacteriol. 162:256-262, 1985), a sequence homologous to a portion of lambda orf-194, and an attR homolog. Inasmuch as the DLP12 att int xis exo P/ren region, the qsr' region, and homologs of orf-194 and attR were arranged in the same order and orientation as the lambdoid prophage counterparts, we propose that the designation DLP12 be applied to all these sequences. This organization of the DLP12 sequences and the presence of the argU/DLP12 int pair in several E. coli strains and closely related species suggest that DLP12 might be an ancestral lambdoid prophage. Moreover, the presence of similar sequences at the junctions of DLP12 segments and their phage counterparts suggests that a common mechanism could have transferred these DLP12 segments to more recent phages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号