首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ineffective screening methods and low levels of disease resistance have hampered genetic analysis of maize (Zea mays L.) resistance to disease caused by maize chlorotic dwarf virus (MCDV). Progeny from a cross between the highly resistant maize inbred line Oh1VI and the susceptible inbred line Va35 were evaluated for MCDV symptoms after multiple virus inoculations, using the viral vector Graminella nigrifrons. Symptom severity scores from three rating dates were used to calculate area under the disease progress curve (AUDPC) scores for vein banding, leaf twist and tear, and whorl chlorosis. AUDPC scores for the F2 population indicated that MCDV resistance was quantitatively inherited. Genotypic and phenotypic analyses of 314 F2 individuals were compared using composite interval mapping (CIM) and analysis of variance. CIM identified two major quantitative trait loci (QTL) on chromosomes 3 and 10 and two minor QTL on chromosomes 4 and 6. Resistance was additive, with alleles from Oh1VI at the loci on chromosomes 3 and 10 contributing equally to resistance.  相似文献   

2.
Fire blight caused by the bacterium Erwinia amylovora is a severe threat to apple and pear orchards worldwide. Apple varieties exhibit a wide range of relative susceptibility/tolerance to fire blight. Although, no monogenic resistance against fire blight has been identified yet, recent evidence indicates the existence of quantitative resistance. Potential sources of fire blight resistance include several wild Malus species and some apple cultivars. F1 progenies of ‘Fiesta’בDiscovery’ were inoculated with the Swiss strain Ea 610 and studied under controlled conditions to identify quantitative trait loci (QTLs) for fire blight resistance. Disease was evaluated at four time points after inoculation. Shoot lesion length and the area under disease progress curve (AUDPC) values were used for QTL analysis. One significant (LOD score of 7.5–8.1, p<0.001) QTL was identified on the linkage group 7 of ‘Fiesta’ (F7). The F7 QTL explained about 37.5–38.6% of the phenotypic variation.  相似文献   

3.
Powdery mildew (PM) is a common disease caused by Blumeria graminis, which affects cereals and has recently adapted to triticale. Adult-plant resistance (APR) genes provide durable protection of crops from the disease. Quantitative trait loci corresponding to the APR effects were mapped in an F2 population of “Lamberto” (susceptible) × “Moderto” (resistant). A genetic map of winter triticale was constructed based on the segregation of 863 DArT, 38 microsatellite and 10 resistance gene analogue markers. Composite interval mapping (CIM) was applied to identify three QTLs for maximum disease severity (MDS) and two for the area under disease progress curve (AUDPC) conferring resistance to the powdery mildew on chromosomes: 6A, 7A, 1B and 4R. The 39% variation in AUDPC was explained by the main QTL localised on chromosome 4R. Genes coding TRIUR3 proteins, serine/threonine protein kinase and cell wall associated kinases were localised in silico within the QTL and alternative DNA markers were proposed for flexible use in laboratories of diversified throughput.  相似文献   

4.
Fusarium head blight (FHB), mainly caused by Fusarium graminearum and F. culmorum, can significantly reduce the grain quality of wheat (Triticum aestivum L.) due to mycotoxin contamination. The objective of this study was to identify quantitative trait loci (QTLs) for FHB resistance in a winter wheat population developed by crossing the resistant German cultivar Dream with the susceptible British cultivar Lynx. A total of 145 recombinant inbred lines (RILs) were evaluated following spray inoculation with a F. culmorum suspension in field trials in 2002 in four environments across Germany. Based on amplified fragment length polymorphism and simple sequence repeat marker data, a 1,734 cM linkage map was established assuming that the majority of the polymorphic parts of the genome were covered. The area under disease progress curve (AUDPC) was calculated based on the visually scored FHB symptoms. The population segregated quantitatively for FHB severity. Composite interval mapping analysis for means across the environments identified four FHB resistance QTLs on chromosomes 6AL, 1B, 2BL and 7BS. Individually the QTLs explained 19%, 12%, 11% and 21% of the phenotypic variance, respectively, and together accounted for 41%. The QTL alleles conferring resistance on 6AL, 2BL and 7BS originated from cv. Dream. The resistance QTL on chromosome 6AL partly overlapped with a QTL for plant height. The FHB resistance QTL on 7BS coincided with a QTL for heading date, but the additive effect on heading date was of minor importance. The resistance QTL on chromosome 1B was associated with the T1BL.1RS wheat-rye translocation of Lynx.  相似文献   

5.
Maize stripe virus (MStV) is a potentially threatening virus disease of maize in the tropics. We mapped quantitative trait loci (QTLs) controlling resistance to MStV in a maize population of 157 F(2:3) families derived from the cross between two maize lines, Rev81 (tropical resistant) and B73 (temperate susceptible). Resistance was evaluated under artificial inoculations in replicated screenhouse trials across different seasons in Réunion Island, France. Composite interval mapping was employed for QTL detection with a linkage map of 143 microsatellite markers. Heritability estimates across seasons were 0.96 and 0.90 for incidence and severity, respectively, demonstrating a high genotypic variability and a good control of the environment. Three regions on chromosomes 2L, 3 and 5, with major effects, and another region on chromosome 2S, with minor effects, provided resistance to MStV in Rev81. In individual seasons, the chr2L QTL explained 60-65% of the phenotypic variation for disease incidence and 21-42% for severity. The chr3 QTL, mainly associated with incidence and located near centromere, explained 42-57% of the phenotypic variation, whereas the chr5 QTL, mainly associated with severity, explained 26-53%. Overall, these QTLs explained 68-73% of the phenotypic variance for incidence and 50-59% for severity. The major QTLs on chr2 and 3 showed additive gene action and were found to be stable over time and across seasons. They also were found to be included in genomic regions with important clusters of resistance genes to diseases and pests. The major QTL on chr5 appeared to be partially dominant in favour of resistance. It was stable over time but showed highly significant QTL x season interactions. Possible implications of these QTLs in different mechanisms of resistance against the virus or the insect vector are discussed. The prospects for transferring these QTLs in susceptible maize cultivars and combining them with other resistances to virus diseases by conventional or marker-assisted breeding are promising.  相似文献   

6.
Dynamic gene action at QTLs for resistance to Setosphaeria turcica in maize   总被引:3,自引:0,他引:3  
 Cultivars with quantitative resistance are widely used to control Setosphaeria turcica (Luttrell) Leonard & Suggs, the causal organism of northern corn leaf blight (NCLB). Here the effectiveness of quantitative trait loci (QTLs) for NCLB resistance was investigated over the course of host plant development in inoculated field trials. A population of 194–256 F2:3 lines derived from a cross between a susceptible Italian (Lo951) and a highly resistant African inbred line (CML202) was tested in three environments in Kenya. The traits assessed were the incubation period (IP), the percentage disease severity (DS 1 to 5, taken biweekly), and the area under the disease progress curve (AUDPC). Considering all resistance traits and environments, a total of 19 putative QTLs were detected by composite interval mapping using a linkage map with 110 RFLP markers. In the combined analysis across environments, nine QTLs were significant (LOD >3.0) for DS 3, recorded around flowering time, explaining 71% of the genotypic variance. Four of these nine QTLs displayed significant (P<0.05) QTL×environment (QTL×E) interaction. Most QTLs were already significant in the juvenile stage (IP) and became less effective after flowering. Across environments, three QTLs conditioned adult-plant resistance, in the sense that they were only significant after flowering. Six QTL alleles on chromosomes 2, 4, 5, 8, and 9 of CML202 should be useful for marker-assisted backcrossing. Received: 24 August 1998 / Accepted: 29 September 1998  相似文献   

7.
Fusarium head blight (FHB) is one of the most important fungal wheat diseases worldwide. Understanding the genetics of FHB resistance is key to facilitate the introgression of different FHB resistance genes into adapted wheat. The objective of this project was to study the FHB resistance QTL on chromosome 6B, quantify the phenotypic variation, and qualitatively map the resistance gene as a Mendelian factor. The FHB resistant parent BW278 (AC Domain*2/Sumai 3) was used as the source of the resistance allele. A large recombinant inbred line (RIL) mapping population was developed from the cross BW278/AC Foremost. The population segregated for three known FHB resistance QTL located on chromosomes 3BSc, 5A, and 6B. Molecular markers on chromosome 6B (WMC104, WMC397, GWM219), 5A (GWM154, GWM304, WMC415), and 3BS (WMC78, GWM566, WMC527) were amplified on approximately 1,440 F2:7 RILs. The marker information was used to select 89 RILs that were fixed homozygous susceptible for the 3BSc and 5A FHB QTLs and were recombinant in the 6B interval. Disease response was evaluated on 89 RILs and parental checks in the greenhouse and field nurseries. Dual floret injection (DFI) was used in greenhouse trials to evaluate disease severity (DS). Macroconidial spray inoculations were used in field nurseries conducted at two locations in southern Manitoba (Carman and Glenlea) over two years 2003 and 2004, to evaluate disease incidence, disease severity, visual rating index, and Fusarium-damaged kernels. The phenotypic distribution for all five-disease infection measurements was bimodal, with lines resembling either the resistant or susceptible checks and parents. All of the four field traits for FHB resistance mapped qualitatively to a coincident position on chromosome 6BS, flanked by GWM133 and GWM644, and is named Fhb2. The greenhouse-DS trait mapped 2 cM distal to Fhb2. Qualitative mapping of Fhb2 in wheat provides tightly linked markers that can reduce linkage drag associated with marker assisted selection of Fhb2 and aid the pyramiding of different resistance loci for wheat improvement.  相似文献   

8.
RFLPs were used to investigate components of host-plant response to Exserohilum turcicum in 150 unselected F23 lines of a B52/Mo17 maize population. Following inoculation with spore suspensions of the pathogen (race 0), components of disease development were measured and then quantitative trait mapping was performed to identify the location and effects of quantitative trait loci (QTLs) determining host-plant response. Components of interest were the average number of lesions per leaf, the average percent leaf tissue diseased (severity) and the average size of lesions (cm2). Based on a LOD threshold of 2.31 (P<0.05), the number of lesions appears to be associated with QTLs on chromosomes 1S, 3L, 5S. Severity was associated with analogous regions and, in addition, QTLs on chromosomes 7L and 8L. Most QTLs, for either of these two components, involve additive gene action and partial dominance or overdominance. In contrast, lesion size was associated with QTLs on chromosomes 7L and 5L; recessive gene action may be involved at 7L.Journal Paper No. J-15178 of the Iowa Agriculture and Home Economic Experiment Station, Ames, Iowa. Project No. 3134  相似文献   

9.
The objective of this study was to map new resistance genes against powdery mildew (Blumeria graminis f. sp. hordei L.), leaf rust (Puccinia hordei L.) and scald [Rhynchosporium secalis (Oud.) J. Davis] in the advanced backcross doubled haploid (BC2DH) population S42 derived from a cross between the spring barley cultivar Scarlett and the wild barley accession ISR42-8 (Hordeum vulgare ssp. spontaneum). Using field data of disease severity recorded in eight environments under natural infestation and genotype data of 98 SSR loci, we detected nine QTL for powdery mildew, six QTL for leaf rust resistance and three QTL for scald resistance. The presence of the exotic QTL alleles reduced disease symptoms by a maximum of 51.5, 37.6 and 16.5% for powdery mildew, leaf rust and scald, respectively. Some of the detected QTL may correspond to previously identified qualitative (i.e. Mla) and to quantitative resistance genes. Others may be newly identified resistance genes. For the majority of resistance QTL (61.0%) the wild barley contributed the favourable allele demonstrating the usefulness of wild barley in the quest for resistant cultivars.  相似文献   

10.
Fusarium head blight (FHB) is a devastating disease of cultivated wheat worldwide. Partial resistance to FHB has been identified in common wheat (Triticum aestivum L.). However, sources of effective FHB resistance have not been found in durum wheat (T. turgidum L. var. durum). A major FHB resistance quantitative trait loci (QTL), Qfhs.ndsu-3AS, was identified on chromosome 3A of T. dicoccoides, a wild relative of durum wheat. Here, we saturated the genomic region containing the QTL using EST-derived target region amplified polymorphism (TRAP), sequence tagged site (STS), and simple sequence repeat (SSR) markers. A total of 45 new molecular marker loci were detected on chromosome 3A and the resulting linkage map consisted of 55 markers spanning a genetic distance of 277.2 cM. Qfhs.ndsu-3AS was positioned within a chromosomal interval of 11.5 cM and is flanked by the TRAP marker loci, Xfcp401 and Xfcp397.2. The average map distance between the marker loci within this QTL region was reduced from 4.9 cM in the previous study to 3.5 cM in the present study. Comparative mapping indicated that Qfhs.ndsu-3AS is not homoeologous to Qfhs.ndsu-3BS, a major FHB QTL derived from the common wheat cultivar Sumai 3. These results facilitate our efforts toward map-based cloning of Qfhs.ndsu-3AS and utilization of this QTL in durum wheat breeding via marker-assisted selection.  相似文献   

11.
Fusarium head blight (FHB) of wheat has become a serious threat to wheat crops in numerous countries. In addition to loss of yield and quality, this disease is of primary importance because of the contamination of grain with mycotoxins such as deoxynivalenol (DON). The Swiss winter cultivar Arina possesses significant resistance to FHB. The objective of this study was to map quantitative trait loci (QTL) for resistance to FHB, DON accumulation and associated traits in grain in a double haploid (DH) population from a cross between Arina and the FHB susceptible UK variety Riband. FHB resistance was assessed in five trials across different years and locations. Ten QTL for resistance to FHB or associated traits were detected across the trials, with QTL derived from both parents. Very few of the QTL detected in this study were coincident with those reported by authors of two other studies of FHB resistance in Arina. It is concluded that the FHB resistance of Arina, like that of the other European winter wheat varieties studied to date, is conferred by several genes of moderate effect making it difficult to exploit in marker-assisted selection breeding programmes. The most significant and stable QTL for FHB resistance was on chromosome 4D and co-localised with the Rht–D1 locus for height. This association appears to be due to linkage of deleterious genes to the Rht-D1b (Rht2) semi-dwarfing allele rather than differences in height per se. This association may compromise efforts to enhance FHB resistance in breeding programmes using germplasm containing this allele.  相似文献   

12.
Under controlled field conditions, a Solanum backcross population segregated for resistance to Phytophthora infestans. The population (`BCT') had been derived previously by crossing the Solanum tuberosum dihaploid USW2230 × Solanum berthaultii PI473331 to obtain the hybrid M200-30, and then backcrossing the hybrid to the S. tuberosum dihaploid HH1-9. Resistance was assessed from analyses of epidemics in small plots of each individual genotype, and data were recorded as area under the disease progress curve (AUDPC). The parents of the original cross (USW2230 and a selection from PI473331) were not included in the test, but the hybrid was incompatible and HH1-9 was compatible with the tester strain of P. infestans (US-8 lineage). Somewhat more than half of the progeny also were incompatible with the tester strain, indicating the presence of an R gene. This gene segregated from the S. berthaultii parent and mapped 4.8 cm from the RFLP marker TG63 on chromosome 10. We deduce that the R gene is not R-1, R-2, R-3, R-6, or R-7 and is probably not R-4, R-5, or R-10. Among the remaining, compatible progeny, there was a wide range of quantitative resistance. All were more resistant than the susceptible cultivar Superior, and most individuals were much more resistant than the moderately resistant cultivar Kennebec. AUDPC values among the sub-population of compatible genotypes ranged from about 400 to 1500 units the first year and from 400 to 1760 units the second year. At least five quantitative trait loci (QTLs) were detected in this sub-population in both 1997 and 1998, including one detected through segregation of alleles from both the hybrid parent and the recurrent S. tuberosum parent. A model of main and epistatic effects explained 56% and 66% of the variation observed for quantitative resistance to late blight in 1997 and 1998, respectively. Several of the QTLs for late blight resistance were located in regions of the genome to which QTLs for late maturity have previously been mapped.  相似文献   

13.
Breeding maize for gray leaf spot (GLS) resistance has been hindered by the quantitative nature of the inheritance of GLS resistance and by the limitations of selection under less than optimumal disease pressure. In order to identify the quantitative trait loci (QTLs) controlling GLS resistance, a cross was made between B73 (susceptible) and Va14 (resistant) to generate a large F2 population. Six GLS disease assessments were made throughout the disease season for over 1000 F2 plants in 1989, and for 600 F2-derived F3 lines replicated in two blocks in 1990. RFLP analysis for78 marker loci representing all ten maize chromosomes was conducted in 239 F2 individuals including those with the extreme GLS disease phenotypes. The GLS disease scores of the three field evaluations, each averaged over six ratings, were separately used for the interval mapping in order to determine the consistency of the QTL effects. The heavy GLS disease pressure, meticulous disease ratings, and large population size of this study afforded us the sensitivity for detecting QTL effects. QTLs located on three chromosomes (1, 4, and 8) had large effects on GLS resistance, each explaining 35.0–56.0%, 8.8–14.3%, and 7.7–11.0% of the variance, respectively. These three QTL effects were remarkably consistent across three disease evaluations over 2 years and two generations. Smaller QTL effects were also found on chromosomes 2 and 5, but the chromosome-5 effect might be a false positive because it was not repeatable even in the same location. The chromosome-1 QTLs had the largest effect or highest R2 reported for any quantitative trait to-date. Except for the chromosome-4 gene, which was from the susceptible parent B73, the resistance alleles at all QTL were derived from Va14. The resistance QTLs on chromosomes 1 and 2 appear to have additive effects, but those on chromosomes 4 and 8 are dominant and recessive, respectively. Significant interaction between the QTLs on chromosomes 1 and 4 was detected in all three evaluations. Cumulatively, the four QTLs identified in this study explained 44, 60, and 68% of the variance in F2, and in F3 replications 1 and 2, respectively.  相似文献   

14.
Fusarium head blight (FHB) is an important disease of wheat worldwide. The cultivar Spark is more resistant than most other UK winter wheat varieties but the genetic basis for this is not known. A mapping population from a cross between Spark and the FHB susceptible variety Rialto was used to identify quantitative trait loci (QTL) associated with resistance. QTL analysis across environments revealed nine QTL for FHB resistance and four QTL for plant height (PH). One FHB QTL was coincident with the Rht-1D locus and accounted for up to 51% of the phenotypic variance. The enhanced FHB susceptibility associated with Rht-D1b is not an effect of PH per se as other QTL for height segregating in this population have no influence on susceptibility. Experiments with near-isogenic lines supported the association between susceptibility and the Rht-D1b allele conferring the semi-dwarf habit. Our results demonstrate that lines carrying the Rht-1Db semi-dwarfing allele are compromised in resistance to initial infection (type I resistance) while being unaffected in resistance to spread within the spike (type II resistance).  相似文献   

15.
Southern leaf blight (SLB) caused by the fungus Cochliobolus heterostrophus (Drechs.) Drechs. is a major foliar disease of maize worldwide. Our objectives were to identify quantitative trait loci (QTL) for resistance to SLB and flowering traits in recombinant inbred line (RIL) population derived from the cross of inbred lines LM5 (resistant) and CM140 (susceptible). A set of 207 RILs were phenotyped for resistance to SLB at three time intervals for two consecutive years. Four putative QTL for SLB resistance were detected on chromosomes 3, 8 and 9 that accounted for 54% of the total phenotypic variation. Days to silking and anthesis–silking interval (ASI) QTL were located on chromosomes 6, 7 and 9. A comparison of the obtained results with the published SLB resistance QTL studies suggested that the detected bins 9.03/02 and 8.03/8.02 are the hot spots for SLB resistance whereas novel QTL were identified in bins 3.08 and 8.01/8.04. The linked markers are being utilized for marker‐assisted mobilization of QTL conferring resistance to SLB in elite maize backgrounds. Fine mapping of identified QTL will facilitate identification of candidate genes underlying SLB resistance.  相似文献   

16.
This study aimed to identify regions of the genome affecting resistance to gastrointestinal nematodes in a Creole goat population naturally exposed to a mixed nematode infection (Haemonchus contortus, Trichostrongylus colubriformis and Oesophagostomum columbianum) by grazing on irrigated pasture. A genome‐wide quantitative trait loci (QTL) scan was performed on 383 offspring from 12 half‐sib families. A total of 101 microsatellite markers were genotyped. Traits analysed were faecal egg count (FEC), packed cell volume (PCV), eosinophil count and bodyweight (BW) at 7 and 11 months of age. Levels of activity of immunoglobulin A (IgA) and activity of immunoglobulin E (IgE) anti‐Haemonchus contortus L3 crude extracts and adult excretion/secretion products (ESPs) were also analysed. Using interval mapping, this study identified 13 QTL for parasite resistance. Two QTL linked with FEC were found on chromosomes 22 and 26. Three QTL were detected on chromosomes 7, 8 and 14 for eosinophil counts. Three QTL linked with PCV were identified on chromosomes 5, 9 and 21. A QTL for BW at 7 months of age was found on chromosome 6. Lastly, two QTL detected on chromosomes 3 and 10 were associated with IgE anti‐L3, and IgE anti‐ESP was linked with two QTL on chromosomes 1 and 26. This study is the first to have identified regions of the genome linked with nematode resistance in a goat population using a genome scan. These results provide useful tools for the understanding of parasite resistance in small ruminants.  相似文献   

17.
Validation of quantitative trait loci (QTLs) is a prerequisite to marker assisted selection (MAS), however, only a fraction of QTLs identified for important plant traits have been independently tested for validation. Resistance to the diseases kernel discoloration (KD) and Fusarium head blight (FHB) in barley is complex and technically difficult to assess, and therefore QTLs for these traits are suitable targets for MAS. We selected two lines, from a QTL mapping population created using the resistant variety Chevron, and crossed them to susceptible parents to generate two validation populations. Genetic maps of both populations were developed for five chromosomes covering 15 selected regions containing QTLs for FHB severity, KD score and concentration of deoxynivalenol (DON), a mycotoxin produced by the FHB pathogen. QTL analyses using these validation populations confirmed that five of the possible 15 QTL regions were associated with at least one of the three traits. While some QTL were detected inconsistently across environments, QTL that could be subjected to validation in both populations were confirmed in both populations in seven out of eight instances. A QTL for KD score on chromosome 6(6H) was confirmed in both validation populations in eight of nine environments and was also associated with FHB in three of six environments. A QTL for FHB on chromosome 2(2H) was confirmed and was also associated with KD and heading date. Marker assisted selection at these two QTLs should enhance disease resistance, however, the QTL on chromosome 2(2H) will also delay heading date.  相似文献   

18.
In both controlled environment and the field, six QTLs for ascochyta blight resistance were identified in three regions of the genome of an intraspecific population of chickpea using the IDS and AUDPC disease scoring systems. One QTL-region was detected from both environments, whereas the other two regions were detected from each environment. All the QTL-regions were significantly associated with ascochyta blight resistance using either of the disease scoring systems. The QTLs were verified by multiple interval mapping, and a two-QTL genetic model with considerable epistasis was established for both environments. The major QTLs generally showed additive gene action, as well as dominance inter-locus interaction in the multiple genetic model. All the QTLs were mapped near a RGA marker. The major QTLs were located on LG III, which was mapped with five different types of RGA markers. A CLRR-RGA marker and a STMS marker flanked QTL 6 for controlled environment resistance at 0.06 and 0.04 cM, respectively. Other STMS markers flanked QTL 1 for field resistance at a 5.6 cM interval. After validation, these flanking markers may be used in marker-assisted selection to breed for elite chickpea cultivars with durable resistance to ascochyta blight. The tight linkage of RGA markers to the major QTL on LG III will allow map-based cloning of the underlying resistance genes.Communicated by P. Langridge  相似文献   

19.
We used a well-characterized barley mapping population (BCD 47 × Baronesse) to determine if barley stripe rust (BSR) resistance quantitative trait loci (QTL) mapped in Mexico and the USA were effective against a reported new race in Peru. Essentially the same resistance QTL were detected using data from each of the three environments, indicating that these resistance alleles are effective against the spectrum of naturally occurring races at these sites. In addition to the mapping population, we evaluated a germplasm array consisting of lines with different numbers of mapped BSR resistance alleles. A higher BSR disease severity on CI10587, which has a single qualitative resistance gene, in Peru versus Mexico suggests there are differences in pathogen virulence between the two locations. Confirmation of a new race in Peru will require characterization using a standard set of differentials, an experiment that is underway. The highest levels of resistance in Peru were observed when the qualitative resistance gene was pyramided with quantitative resistance alleles. We also used the mapping population to locate QTL conferring resistance to barley leaf rust and barley powdery mildew. For mildew, we identified resistance QTL under field conditions in Peru that are distinct from the Mla resistance that we mapped using specific isolates under controlled conditions. These results demonstrate the long-term utility of a reference mapping population and a well-characterized germplasm array for locating and validating genes conferring quantitative and qualitative resistance to multiple pathogens.  相似文献   

20.
A backcross population, derived from the cross (S. tuberosumxS. spegazzinii)xS. tuberosum was used to map QTLs involved in nematode resistance, tuber yield and root development. Complete linkage maps were available for the interspecific hybrid parent as well as the S. tuberosum parent, and interval mapping for all traits was performed for both. Additionally, the intra- and inter-locus interactions of the QTLs were examined. The Gro1.2 locus, involved in resistance to G. rostochiensis pathotype Ro1, that was previously mapped in the S. tuberosumxS. spegazzinii F1 population, was located more precisely on chromosome 10. A new resistance locus, Gro1.4, also conferring resistance to G. rostochiensis pathotype Ro1, was found on chromosome 3. Different alleles of this locus originating from both parents contributed to the resistant phenotype, indicating multiallelism at this locus. No interlocus interactions were observed between these two resistance loci. For resistance to G. pallida no QTLs were detected. One minor QTL involved in tuber yield was located on chromosome 4. Two QTLs involved in root development and having large effects were mapped on chromosomes 2 and 6 and an epistatic interaction was found between these two loci.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号