首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Retroviral vectors provide a safe and efficient method of introducing genes of therapeutic interest into dividing cells. The principle limitation of these vectors in the past has been poor gene expression in vivo. This problem has been overcome recently through the use of tissue-specific enhancers in commonly used retroviral vectors. In this review we discuss both the relevant biology and some of the practical applications of retroviral vectors in gene therapy.  相似文献   

2.
Retroviral vectors have become an important tool for gene transfer in vitro and in vivo. Classical Moloney murine leukemia virus (MLV) based retroviral vectors have been used for over 20 years to transfer genes into dividing cells. Cell lines for production of retroviral vectors have become commonly available and modifications in retroviral vector design and use of envelope proteins have made the production of high titer, helper-free, infectious virus stocks relatively easy. More recently, lentiviral vectors, another class of retroviruses, have been modified for in vitro and in vivo gene transfer. The ability of lentiviral vectors to transduce non-dividing cells has made them especially attractive for in vivo gene transfer into differentiated, non-dividing tissues. Several improvements in helper plasmids and vectors have made lentivirus a safe vector system for ex vivo and in vivo gene transfer. This review will briefly summarize the background of these vector systems and provide some common protocols available for the preparation of MLV based retroviral vectors and HIV-1 based lentiviral vectors.  相似文献   

3.
Azzouz M 《Biochimica et biophysica acta》2006,1762(11-12):1122-1127
Amyotrophic lateral sclerosis (ALS) is a devastating disease for which there are no effective drug treatments to date. Recent advances in Gene Therapy open up the possibility of developing an effective treatment aiming at halting or delaying the degeneration of motor neurons. Viral vectors such as lentiviral vectors and adeno-associated virus can transfer genes into many different types of primary neurons from a broad range of species including man and the resulting gene expression is long-term. Numerous animal studies have now been undertaken with these vectors and correction of disease models has been obtained. These vectors have been refined to a very high level and can be produced safely for the clinic. However, we believe that there are some major issues that need to be addressed in order to see a Gene Therapy approach with viral vectors proceed to the clinic for ALS patients. This review will describe the general features of lentiviral vectors. It will then describe some key examples of gene transfer and genetic correction in animal models of motor neuron disease. The prospects for the clinical evaluation of lentiviral vectors for the treatment of human motor neuron disease will be outlined.  相似文献   

4.
Antimicrobial peptides (AMPs) are a group of peptides that are active against a diverse spectrum of microorganisms. Due to their mode of action, AMPs are a promising class of molecules that could overcome the problems of increasing resistance of bacteria to conventional antibiotics. Furthermore, AMPs are strongly membrane-active and some are able to translocate into cells without the necessity for permanent membrane permeabilization. This feature has brought them into focus for use as transport vectors in the context of drug delivery. Since the plasma membrane restricts transport of bioactive substances into cells, great research interest lies in the development of innovative ways to overcome this barrier and to increase bioavailability. In this context, peptide-based transport systems, such as cell-penetrating peptides (CPPs), have come into focus, and their efficiency has been demonstrated in many different applications. However, more recently, also some AMPs have been used as efficient vectors for intracellular translocation of various active molecules. This review summarizes recent efforts in this interesting field of drug delivery. Moreover, some examples of the application of CPPs as efficient antimicrobial substances will be discussed.  相似文献   

5.
RNA interference in infectious tropical diseases   总被引:2,自引:0,他引:2  
Introduction of double-stranded RNA (dsRNA) into some cells or organisms results in degradation of its homologous mRNA, a process called RNA interference (RNAi). The dsRNAs are processed into short interfering RNAs (siRNAs) that subsequently bind to the RNA-induced silencing complex (RISC), causing degradation of target mRNAs. Because of this sequence-specific ability to silence target genes, RNAi has been extensively used to study gene functions and has the potential to control disease pathogens or vectors. With this promise of RNAi to control pathogens and vectors, this paper reviews the current status of RNAi in protozoans, animal parasitic helminths and disease-transmitting vectors, such as insects. Many pathogens and vectors cause severe parasitic diseases in tropical regions and it is difficult to control once the host has been invaded. Intracellularly, RNAi can be highly effective in impeding parasitic development and proliferation within the host. To fully realize its potential as a means to control tropical diseases, appropriate delivery methods for RNAi should be developed, and possible off-target effects should be minimized for specific gene suppression. RNAi can also be utilized to reduce vector competence to interfere with disease transmission, as genes critical for pathogenesis of tropical diseases are knockdowned via RNAi.  相似文献   

6.
There is an enormous initiative to establish the genetic basis for disorders of brain function. Unfortunately, genetic intervention is not accomplished easily in the nervous system. One strategy is to engineer and deliver to neurons specialized viral vectors that carry a gene (or genes) of interest, thereby exploiting the natural ability of viruses to insert genetic material into cells. When delivered to brain cells, these vectors cause infected cells to increase the expression of the genes of interest. The ability to deliver genes into neurons in vitro and in vivo with herpes simplex virus (HSV) amplicon vectors has made it possible to carry out exactly these sorts of experiments. This technology has the potential to offer new insights into the etiology of a wide variety of neuropsychiatric disorders. We describe the use of HSV amplicon vectors to study Alzheimer disease, drug addiction, and depression, and discuss the considerations that enter into the use of these vectors both in vitro and in vivo. The HSV amplicon virus is a user-friendly vector for the delivery of genes into neurons that has come of age for the study of brain function.  相似文献   

7.
Though the delivery of siRNA into cells, tissues or organs remains to be a big obstacle for its applications, recently siRNA therapeutics has developed rapidly and already there are clinical trials ongoing or planned. Some non-viral vectors have attracted much more attention and shown the great potential for combating the delivery obstacle. As a novel class of lipid like materials lipidoids have the advantages of easy synthesis and large library of compounds. Cell penetrating peptides and chitosans have been used for the delivery of bioactive molecules for many years, but they are showing great promise for the delivery of siRNA. The hybrids of inorganic particles and the conjugates of siRNA have indicated the complex utilization different materials may provide another solution to the delivery problem. The most exciting thing is some clinical trials are undergoing, which provokes the hope of real curing method by using RNAi mediated by some non-viral vectors.  相似文献   

8.
Nakai H  Storm TA  Kay MA 《Journal of virology》2000,74(20):9451-9463
Recombinant adeno-associated virus (rAAV) vectors stably transduce hepatocytes in experimental animals. Following portal-vein administration of rAAV vectors in vivo, single-stranded (ss) rAAV genomes become double stranded (ds), circularized, and/or concatemerized concomitant with a slow rise and, eventually, steady-state levels of transgene expression. Over time, at least some of the stabilized genomes become integrated into mouse chromosomal DNA. The mechanism(s) of formation of stable ds rAAV genomes from input ss DNA molecules has not been delineated, although second-strand synthesis and genome amplification by a rolling-circle model has been proposed. To begin to delineate a mechanism, we produced rAAV vectors in the presence of bacterial PaeR7 or Dam methyltransferase or constructed rAAV vectors labeled with different restriction enzyme recognition sites and introduced them into mouse hepatocytes in vivo. A series of molecular analyses demonstrated that second-strand synthesis and rolling-circle replication did not appear to be the major processes involved in the formation of stable ds rAAV genomes. Rather, recruitment of complementary plus and minus ss genomes and subsequent random head-to-head, head-to-tail, and tail-to-tail intermolecular joining were primarily responsible for the formation of ds vector genomes. These findings contrast with the previously described mechanism(s) of transduction based on in vitro studies. Understanding the mechanistic process responsible for vector transduction may allow the development of new strategies for improving rAAV-mediated gene transfer in vivo.  相似文献   

9.
Vectors based on lentiviruses efficiently deliver genes into many different types of primary neurons from a broad range of species including man and the resulting gene expression is long term. These vectors are opening up new approaches for the treatment of neurological diseases such as Parkinson's disease (PD), Huntington's disease (HD), and motor neuron diseases (MNDs). Numerous animal studies have now been undertaken with these vectors and correction of disease models has been obtained. Lentiviral vectors also provide a new strategy for in vivo modeling of human diseases; for example, the lentiviral-mediated overexpression of mutated human alpha-synuclein or huntingtin genes in basal ganglia induces neuronal pathology in animals resembling PD and HD in man. These vectors have been refined to a very high level and can be produced safely for the clinic. This review will describe the general features of lentiviral vectors with particular emphasis on vectors derived from the non-primate lentivirus, equine infectious anemia virus (EIAV). It will then describe some key examples of genetic correction and generation of genetic animal models of neurological diseases. The prospects for clinical application of lentiviral vectors for the treatment of PD and MNDs will also be outlined.  相似文献   

10.
《Cancer epidemiology》2013,37(6):1014-1019
Background: Gene therapy has attracted attention for its potential to specifically and efficiently target cancer cells with minimal toxicity to normal cells. At present, it offers a promising direction for the treatment of cancer patients. Numerous vectors have been engineered for the sole purpose of killing cancer cells, and some have successfully suppressed malignant tumours. Many plant proteins have anticancer properties; consequently, genes encoding some of these proteins are being used to design constructs for the inhibition of multiplying cancer cells. Results: Data addressing the function of vectors harbouring genes specifically encoding ricin, saporin, lunasin, linamarase, and tomato thymidine kinase 1 under the control of different promoters are summarised here. Constructs employing genes to encode cytotoxic proteins as well as constructs employing genes of enzymes that convert a nontoxic prodrug into a toxic drug are considered here. Conclusion: Generation of eukaryotic expression vectors containing genes encoding plant proteins for killing of cancer cells may permit the broadening of cancer gene therapy strategy, particularly because of the specific mode of action of anticancer plant proteins.  相似文献   

11.
Adenovirus and adeno-associated virus vectors   总被引:23,自引:0,他引:23  
Recombinant adenovirus (rAd) and recombinant adeno-associated virus (rAAV) are among the most extensively used vectors in gene therapy studies to date. These two vectors share some similar features such as a broad host range and ability to infect both proliferating and quiescent cells. However, they also possess their own unique set of properties that render them particularly attractive for gene therapy applications. rAd vectors can accommodate larger inserts, mediate transient but high levels of protein expression, and can be easily produced at high titers. Development of gutted rAd vectors has further increased the cloning capacity of these vectors. The gaining popularity of rAAV use in gene therapy can be attributed to its lack of pathogenicity and added safety due to its replication defectiveness, and its ability to mediate long-term expression in a variety of tissues. Site-specific integration, as occurs with wild-type AAV, will be a unique and valuable feature if incorporated into rAAV vectors, further improving their safety. This paper describes these properties of rAd and rAAV vectors, and discusses further development and vector improvements that continue to extend the utility of these vectors, such as cell retargeting by capsid modification, differential transduction by use of serotypes, and extension of the cloning capacity of rAAV vectors by dual vector heterodimerization.  相似文献   

12.
Positive selection vectors   总被引:4,自引:0,他引:4  
This review describes information concerning positive selection vectors on their mechanism, classification, property, and limitation. A total of 72 positive selection vectors collected were discussed. Positive selection vectors can reduce background and directly screen transformants containing cloned DNA fragments. The mechanisms to perform positive selection include insertional inactivation and the replacement of functional genes of the vectors. In general, the former is much more convenient than the latter. The functional genes are controlled either by their promoters or by heterologous promoters introduced. On the basis of the structures, positive selection vectors could be classified into five groups. The positive selection vectors are commonly based on the mechanisms of lethal genes and the sensitivity of compounds. The vectors, with molecular weights ranging from 2.6 to 17.0 kb, have diverse genetic markers and wide host ranges, including Escherichia coli, Bacillus, Streptomyces, lactic acid bacteria, yeasts, and mammalian cells. Although some limitations exist for using some positive selection vectors, they are useful in recombinant DNA experiments.  相似文献   

13.
Skeletal muscle is a promising target tissue for gene therapy, for both muscle and non-muscle disorders. A variety of methods have been studied to transfer genes into skeletal muscle, including retroviral, adenoviral and herpes simplex viral vectors. However, various factors impede muscle-based viral gene therapy. Here, we discuss why some viral vectors cannot efficiently transduce mature muscle fibers, and describe some new approaches to overcome this barrier.  相似文献   

14.
Retrovirus vectors can be made in the absence of helper virus by using retrovirus packaging cell lines. Helper-free virus is critical for a variety of gene transfer studies. The most useful packaging cell lines contain helper virus DNA from which the signal required for packaging of the viral RNA genome into virions has been deleted. However, we showed that the ability to package virus is conferred at very low frequency to cells infected with virus from these packaging cell lines, presumably by low-frequency transmission of the deleted virus genome. In addition, these packaging cell lines can interact with some retroviral vectors to yield replication-competent virus. We constructed packaging cell lines containing helper virus DNA that had several alterations in addition to deletion of the packaging signal. The new packaging cells retained the useful features of previously available lines but did not yield helper virus after introduction of any of the vectors tested, and transfer of the packaging function was not detected.  相似文献   

15.
J E Nelson  M A Kay 《Journal of virology》1997,71(11):8902-8907
Recombinant adenovirus vectors represent an efficient means of transferring genes into many different organs. The first-generation E1-deleted vector genome remains episomal and, in the absence of host immunity, persists long-term in quiescent tissues such as the liver. The mechanism(s) which allows for persistence has not been established; however, vector DNA replication may be important because replication has been shown to occur in tissue culture systems. We have utilized a site-specific methylation strategy to monitor the replicative fate of E1-deleted adenovirus vectors in vitro and in vivo. Methylation-marked adenovirus vectors were produced by the addition of a methyl group onto the N6 position of the adenine base of XhoI sites, CTCGAG, by propagation of vectors in 293 cells expressing the XhoI isoschizomer PaeR7 methyltransferase. The methylation did not affect vector production or transgene expression but did prevent cleavage by XhoI. Loss of methylation through viral replication restores XhoI cleavage and was observed by Southern analysis in a wide variety of, but not all, cell culture systems studied, including hepatoma and mouse and macaque primary hepatocyte cultures. In contrast, following liver-directed gene transfer of methylated vector in C57BL/6 mice, adenovirus vector DNA was not cleaved by XhoI and therefore did not replicate, even after a period of 3 weeks. Although replication may occur in some tissues, these results show that stabilization of the vector within the target tissue prior to clearance by host immunity is not dependent upon replication of the vector, demonstrating that the input transduced DNA genomes were the persistent molecules. This information will be useful for the design of optimal adenovirus vectors and perhaps nonviral episomal vectors for clinical gene therapy.  相似文献   

16.
17.
Simian virus-40 (SV40), an icosahedral papovavirus, has recently been modified to serve as a gene delivery vector. Recombinant SV40 vectors (rSV40) are good candidates for gene transfer, as they display some unique features: SV40 is a well-known virus, nonreplicative vectors are easy-to-make, and can be produced in titers of 10(12) IU/ml. They also efficiently transduce both resting and dividing cells, deliver persistent transgene expression to a wide range of cell types, and are nonimmunogenic. Present disadvantages of rSV40 vectors for gene therapy are a small cloning capacity and the possible risks related to random integration of the viral genome into the host genome. Considerable efforts have been devoted to modifing this virus and setting up protocols for viral production. Preliminary therapeutic results obtained both in tissue culture cells and in animal models for heritable and acquired diseases indicate that rSV40 vectors are promising gene transfer vehicles. This article reviews the work performed with SV40 viruses as recombinant vectors for gene transfer. A summary of the structure, genomic organization, and life cycle of wild-type SV40 viruses is presented. Furthermore, the strategies utilized for the development, production, and titering of rSV40 vectors are discussed. Last, the therapeutic applications developed to date are highlighted.  相似文献   

18.
The use of viral vectors as agents for gene delivery provides a direct approach to manipulate gene expression in the mammalian central nervous system (CNS). The present article describes in detail the methodology for the injection of viral vectors, in particular adeno-associated virus (AAV) vectors, into the adult rat brain and spinal cord to obtain reproducible and successful transduction of neural tissue. Surgical and injection procedures are based on the extensive experience of our laboratory to deliver viral vectors to the adult rat CNS and have been optimized over the years. First, a brief overview is presented on the use and potential of viral vectors to treat neurological disorders or trauma of the CNS. Next, methods to deliver AAV vectors to the rat brain and spinal cord are described in great detail with the intent of providing a practical guide to potential users. Finally, some data on the experimental outcomes following AAV vector-mediated gene transfer to the adult rat CNS are presented as is a brief discussion on both the advantages and limitations of AAV vectors as tools for somatic gene transfer.  相似文献   

19.
Bacterial beta-glucuronidase (gus) and neomycin phosphotransferase (neo) genes were introduced into coat protein replacement vectors based on DNA A of tomato golden mosaic virus (TGMV). Recombinant gus and neo vectors up to 1.1 kbp larger than DNA A were shown to replicate stably in transgenic plants containing partial dimers (master copies) of the vectors integrated into their chromosomal DNA in the absence of DNA B. Beta-glucuronidase and neomycin phosphotransferase activities in independently transformed plants were proportional to the copy number of the double-stranded forms of the vector. Deletion analysis has shown that an essential part of the TGMV coat protein promoter, including a TATA box, lies within 76 nt upstream of the initiation codon of the gene. An increase in expression of a neo gene was obtained by replacing this 76 nt sequence by an 800 nt sequence containing a cauliflower mosaic virus 35S RNA promoter with no effect on the ability of the vector to replicate or on its stability in transgenic plants. Systemic infection of plants by agroinoculation with TGMV vectors larger than DNA A in the presence of DNA B resulted in deletions in the vector DNA in some, but not all, plants. Possible reasons for vector instability in systemically infected plants, and vector stability in transgenic plants containing master copies of the vector, are discussed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号