首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Plasmodium sporozoites are injected into the mammalian host during mosquito blood feeding and carried by the blood stream to the liver, where they infect hepatocytes and develop into erythrocyte-invasive forms. To reach the hepatocytes, sporozoites must cross the liver sinusoidal cell layer, which separates the hepatocytes from the circulatory system. Little is known about the molecular mechanisms by which sporozoites breach this cellular barrier. Here we report that a protein with a membrane attack complex/perforin (MACPF)-related domain is involved in this step. This molecule is specifically expressed in liver-infective sporozoites and localized in micronemes, organelles engaged in host cell invasion. Gene disruption experiments revealed that this protein is essential for the membrane-wounding activity of the sporozoite and is involved in its traversal of the sinusoidal cell layer prior to hepatocyte-infection. Disruptants failed to leave the circulation, and most of them were eliminated from the blood by liver perfusion. Our results suggest that rupture of the host plasma membrane by the pore-forming activity of this molecule is essential for cell passage of the sporozoite. This report is the first to demonstrate an important role of a MACPF-related protein in host cell invasion by a pathogenic microorganism.  相似文献   

2.
3.
The malaria sporozoite, the parasite stage transmitted by the mosquito, is delivered into the dermis and differentiates in the liver. Motile sporozoites can invade host cells by disrupting their plasma membrane and migrating through them (termed cell traversal), or by forming a parasite-cell junction and settling inside an intracellular vacuole (termed cell infection). Traversal of liver cells, observed for sporozoites in vivo, is thought to activate the sporozoite for infection of a final hepatocyte. Here, using Plasmodium berghei, we show that cell traversal is important in the host dermis for preventing sporozoite destruction by phagocytes and arrest by nonphagocytic cells. We also show that cell infection is a pathway that is masked, rather than activated, by cell traversal. We propose that the cell traversal activity of the sporozoite must be turned on for progression to the liver parenchyma, where it must be switched off for infection of a final hepatocyte.  相似文献   

4.
Mammalian development requires commitment of cells to restricted lineages, which requires epigenetic regulation of chromatin structure. Epigenetic modifications were examined during in vitro differentiation of murine embryonic stem (ES) cells. Global histone acetylation, a euchromatin marker, declines dramatically within 1 day of differentiation induction and partially rebounds by day 2. Histone H3-Lys9 methylation, a heterochromatin marker, increases during in vitro differentiation. Conversely, the euchromatin marker H3-Lys4 methylation transiently decreases, then increases to undifferentiated levels by day 4, and decreases by day 6. Global cytosine methylation, another heterochromatin marker, increases slightly during ES cell differentiation. Chromatin structure of the Oct4 and Brachyury gene promoters is modulated in concert with their pattern of expression during ES cell differentiation. Importantly, prevention of global histone deacetylation by treatment with trichostatin A prevents ES cell differentiation. Hence, ES cells undergo functionally important global and gene-specific remodeling of chromatin structure during in vitro differentiation. genesis 38:32-38, 2004.  相似文献   

5.
The malarial parasite imports an infected host's red blood cell enzymes for heme biosynthesis during the intraerythrocytic stage. This is despite all the genes of the heme-biosynthetic pathway having been identified on the parasite genome. On the basis of predictions of parasite genome-coded enzyme localization, functionality of some of these enzymes and shuttling of intermediates between different parasite compartments, a hybrid model for parasite heme biosynthesis has been proposed. However, this model does not take into account the possible role of imported host enzymes in parasite heme biosynthesis. We propose an alternative model with an extrinsic heme-biosynthetic pathway in the parasite cytosol that uses imported host enzymes, and an intrinsic pathway confined to the organellar fractions that uses the parasite-genome-encoded enzymes.  相似文献   

6.
The intra-erythrocytic stages of the malaria parasite endocytose large quantities of the surrounding erythrocyte cytoplasm and deliver it to a digestive food vacuole via endocytic vesicles. Digestion provides amino acids for parasite protein synthesis and is required to maintain the osmotic integrity of the host cell. The parasite endocytic pathway has been described morphologically by electron microscopy, but the molecular mechanisms that mediate and regulate it remain elusive. Given the involvement of actin in endocytosis in other eukaryotes, we have used actin inhibitors to assess the requirement for this protein in the endocytic pathway of the human malaria parasite, Plasmodium falciparum . Treatment of cultures with cytochalasin D did not affect haemoglobin levels in the parasites when co-administered with protease inhibitors, and neither did it affect the uptake of the endocytic tracer horseradish peroxidase, suggesting the absence of actin in the mechanism of endocytosis. However, in the absence of protease inhibitors, treated parasites contained increased levels of haemoglobin due to an accumulation of enlarged endocytic vesicles, as determined by immunofluorescence and electron microscopy, suggesting a role for actin in vesicle trafficking, possibly by mediating vesicle maturation and/or fusion to the digestive vacuole. In contrast to cytochalasin D, treatment with jasplakinolide led to an inhibition of endocytosis, an accumulation of vesicles closer to the plasma membrane and a marked concentration of actin in the parasite cortex. We propose that the stabilization of cortical actin filaments by jasplakinolide interferes with normal endocytic vesicle formation and migration from the cell periphery.  相似文献   

7.
Cerebral malaria (CM) is a fatal complication of Plasmodium falciparum infection. Using a well defined murine model, we observed the effect on disease outcome of temporarily reducing parasite burden by anti-malarial drug treatment. The anti-malarial treatment regime chosen decreased parasitaemia but did not cure the mice, allowing recrudescence of parasites. These mice were protected against CM, despite their parasitaemia having increased, following treatment cessation, to levels surpassing that associated with CM in mice not treated with the drug. The protection was associated with reduced levels of cytokines, chemokines, CD8+ T cells and parasites in the brain. The results suggest that the development of the immunopathological response that causes CM depends on a continuous stimulus provided by parasitised red blood cells, either circulating or sequestered in small vessels.  相似文献   

8.
9.
The phenotypic features of liver sinusoidal endothelial cells (SEC), open fenestrae in sieve plates and lack of a basement membrane, are lost with capillarization. The current study examines localization of CD31 as a marker for the dedifferentiated, nonfenestrated SEC and examines regulation of SEC phenotype in vitro. CD31 localization in SEC was examined by confocal microscopy and immunogold-scanning electron microscopy. SEC cultured for 1 day express CD31 in the cytoplasm, whereas after 3 days, CD31 is also expressed on cell-cell junctions. Immunogold-scanning electron microscopy confirmed the absence of CD31 surface expression on fenestrated SEC 1 day after isolation and demonstrated the appearance of CD31 surface expression on SEC that had lost fenestration after 3 days in culture. SEC isolated from fibrotic liver do show increased expression of CD31 on the cell surface. Coculture with either hepatocytes or stellate cells prevents CD31 surface expression, and this effect does not require heterotypic contact. The paracrine effect of hepatocytes or stellate cells on SEC phenotype is abolished with anti-VEGF antibody and is reproduced by addition of VEGF to SEC cultured alone. VEGF stimulates SEC production of nitric oxide. NG-nitro-L-arginine methyl ester blocked the paracrine effect of hepatocytes or stellate cells on SEC phenotype and blocked the ability of VEGF to preserve the phenotype of SEC cultured alone. In conclusion, surface expression of CD31 is a marker of a dedifferentiated, nonfenestrated SEC. The VEGF-mediated paracrine effect of hepatocytes or stellate cells on maintenance of SEC phenotype requires autocrine production of nitric oxide by SEC.  相似文献   

10.
Apoptosis is defined on the basis of morphological changes like nuclear fragmentation and chromatin condensation, which are dependent on caspases. Many forms of caspase-independent cell death have been reported, but the mechanisms are still poorly understood. We found that hypoxic cell death was independent of caspases and was associated with significant nuclear shrinkage. Neither Bcl-2 nor Apaf-1 deficiency prevented hypoxic nuclear shrinkage. To understand the molecular mechanism of the nuclear shrinkage, we developed an in vitro system using permeabilized cells, which allowed us to purify a novel member of the phospholipase A2 (PLA2) family that induced nuclear shrinkage. Purified PLA2 induced nuclear shrinkage in our permeabilized cell system. PLA2 inhibitors prevented hypoxic nuclear shrinkage in cells and cell death. Hypoxia caused elevation of PLA2 activity and translocation of intracellular PLA2s to the nucleus. Knockdown of the Ca2+-independent PLA2 delayed nuclear shrinkage and cell death. These results indicate that Ca2+-independent PLA2 is crucial for a caspase-independent cell death signaling pathway leading to nuclear shrinkage.  相似文献   

11.
Multinucleated myotubes are formed by fusion of mononucleated myogenic progenitor cells (myoblasts) during terminal skeletal muscle differentiation. In addition, myoblasts fuse with myotubes, but terminally differentiated myotubes have not been shown to fuse with each other. We show here that an adenylate cyclase activator, forskolin, and other reagents that elevate intracellular cyclic AMP (cAMP) levels induced cell fusion between small bipolar myotubes in vitro. Then an extra-large myotube, designated a "myosheet," was produced by both primary and established mouse myogenic cells. Myotube-to-myotube fusion always occurred between the leading edge of lamellipodia at the polar end of one myotube and the lateral plasma membrane of the other. Forskolin enhanced the formation of lamellipodia where cAMP-dependent protein kinase (PKA) was accumulated. Blocking enzymatic activity or anchoring of PKA suppressed forskolin-enhanced lamellipodium formation and prevented fusion of multinucleated myotubes. Localized PKA activity was also required for fusion of mononucleated myoblasts. The present results suggest that localized PKA plays a pivotal role in the early steps of myogenic cell fusion, such as cell-to-cell contact/recognition through lamellipodium formation. Furthermore, the localized cAMP-PKA pathway might be involved in the specification of the fusion-competent areas of the plasma membrane in lamellipodia of myogenic cells.  相似文献   

12.
13.
Engulfment is required for cell competition   总被引:3,自引:0,他引:3  
Li W  Baker NE 《Cell》2007,129(6):1215-1225
Genetic mosaics that place cells in competition within tissues may model features of tissue repair and tumor development and may reveal mechanisms of growth regulation. In one example, normal cells eliminate "Minute" cells that have reduced ribosomal protein gene dose and grow at their expense, replacing the Minute cells within developing compartments. We describe genes that are required by wild-type cells to kill Minute neighbors in Drosophila. The engulfment genes draper, wasp, the phosphatidylserine receptor, mbc/dock180, and rac1 are needed in wild-type cells for the death of Minute neighbors, whose corpses are engulfed by wild-type cells. Wild-type cells can themselves be killed by cells with elevated engulfing activity. Thus engulfment genes act downstream of growth differences between cells to eliminate cells with reduced ribosomal gene dose.  相似文献   

14.
Recognition of the widespread importance of apoptosis has been one of the most significant changes in the biomedical sciences in the past decade. The molecular processes controlling and executing cell death through apoptosis are, however, still poorly understood. The ICE (Interleukin-1beta Converting Enzyme) family-recently named the caspases for cysteine aspartate-specific proteases-plays a central role in apoptosis and may well constitute part of the conserved core mechanism of the process. Potentially, these proteases may be of great significance, both in the pathology associated with failure of apoptosis and also as targets for therapeutic intervention where apoptosis occurs inappropriately, e.g. in degenerative disease and AIDS. However, this is only likely if caspase activity is required before commitment to mammalian cell death. Here, we have used both peptide inhibitors and crmA transfection to inhibit these proteases in intact cells. Our experiments show that selective inhibition of some caspases protects human T cells (Jurkat and CEM-C7) from Fas-induced apoptosis, dramatically increasing their survival (up to 320-fold) in a colony-forming assay. This suggests that dysfunction of some, but not all, caspases could indeed play a crucial part in the development of some cancers and autoimmune disease, and also that these proteases could be appropriate molecular targets for preventing apoptosis in degenerative disease.  相似文献   

15.
Infection with Trypanosoma cruzi, the agent of Chagas' disease, results in elevated levels of interleukin-6 (IL-6) in serum and infected tissues. However, it remains unknown whether IL-6 plays a role in host defence against T. cruzi. To determine whether IL-6 underlies disease progression, we followed the time course of T. cruzi-infected mice bearing IL-6 +/+ and minus sign/minus sign genotypes, respectively. We found that IL-6 minus sign/minus sign mice were more susceptible to T. cruzi infection as they exhibited about 3-fold higher parasitaemia and died earlier than wild-type animals. Unlike what might be expected, T. cruzi-infected IL-6 minus sign/minus sign mice did not show at peak infection a decrease in the secretion of IFN-gamma, a Th1 cytokine crucial for controlling the parasite. Instead, they exhibited a much reduced splenocyte recall response to T. cruzi antigens. Our results suggest that IL-6 mediates anti-parasite protective responses against T. cruzi.  相似文献   

16.
Reticulon and REEP family of proteins stabilize the high curvature of endoplasmic reticulum (ER) tubules. Plasmodium berghei Yop1 (PbYop1) is a REEP5 homolog in Plasmodium. Here, we characterize its function using a gene-knockout (Pbyop1∆). Pbyop1∆ asexual stage parasites display abnormal ER architecture and an enlarged digestive vacuole. The erythrocytic cycle of Pbyop1∆ parasites is severely attenuated and the incidence of experimental cerebral malaria is significantly decreased in Pbyop1∆-infected mice. Pbyop1∆ sporozoites have reduced speed, are slower to invade host cells but give rise to equal numbers of infected HepG2 cells, as WT sporozoites. We propose that PbYOP1’s disruption may lead to defects in trafficking and secretion of a subset of proteins required for parasite development and invasion of erythrocytes. Furthermore, the maintenance of ER morphology in different parasite stages is likely to depend on different proteins.  相似文献   

17.
Ferroportin (Fpn), a ferrous iron Fe(II) transporter responsible for the entry of iron into plasma, is regulated post-translationally through internalization and degradation following binding of the hormone hepcidin. Cellular iron export is impaired in mice and humans with aceruloplasminemia, an iron overload disease due to mutations in the ferroxidase ceruloplasmin (Cp). In the absence of Cp Fpn is rapidly internalized and degraded. Depletion of extracellular Fe(II) by the yeast ferroxidase Fet3p or iron chelators can maintain cell surface Fpn in the absence of Cp. Iron remains bound to Fpn in the absence of multicopper oxidases. Fpn with bound iron is recognized by a ubiquitin ligase, which ubiquitinates Fpn on lysine 253. Mutation of lysine 253 to alanine prevents ubiquitination and maintains Fpn-iron on cell surface in the absence of ferroxidase activity. The requirement for a ferroxidase to maintain iron transport activity represents a new mechanism of regulating cellular iron export, a new function for Cp and an explanation for brain iron overload in patients with aceruloplasminemia.  相似文献   

18.
19.
TNFα, a mediator of hepatotoxicity in several animal models, is elevated in acute and chronic liver diseases. Therefore, we investigated whether hepatic injury and fibrosis due to bile duct ligation (BDL) would be reduced in TNFα knockout mice (TNFα−/−). Survival after BDL was 60% in wild-type mice (TNFα+/+) and 90% in TNFα−/− mice. Body weight loss and liver to body weight ratios were reduced in TNFα−/− mice compared to TNFα+/+ mice. Following BDL, serum alanine transaminases (ALT) levels were elevated in TNFα+/+ mice (268.6 ± 28.2 U/L) compared to TNFα−/− mice (105.9 U/L ± 24.4). TNFα−/− mice revealed lower hepatic collagen expression and less liver fibrosis in the histology. Further, α-smooth muscle actin, an indicator for activated myofibroblasts, and TGF-β mRNA, a profibrogenic cytokine, were markedly reduced in TNFα−/− mice compared to TNFα+/+ mice. Thus, our data indicate that TNFα induces hepatotoxicity and promotes fibrogenesis in the BDL model.  相似文献   

20.

Background

The public health threats imposed by toxoplasmosis worldwide and by malaria in sub-Saharan countries are directly associated with the capacity of their related causative agents Toxoplasma and Plasmodium, respectively, to colonize and expand inside host cells. Therefore, deciphering how these two Apicomplexan protozoan parasites access their host cells has been highlighted as a priority research with the perspective of designing anti-invasive molecules to prevent diseases. Central to the mechanism of invasion for both genera is mechanical force, which is thought to be applied by the parasite at the interface between the two cells following assembly of a unique cell-cell junction but this model lacks direct evidence and has been challenged by recent genetic studies. In this work, using parasites expressing the fluorescent core component of this junction, we analyze characteristic features of the kinematics of penetration of more than 1,000 invasion events.

Results

The majority of invasion events occur with a typical forward rotational progression of the parasite through a static junction into an invaginating host cell plasma membrane. However, if parasites encounter resistance and if the junction is not strongly anchored to the host cell cortex, as when parasites do not secrete the toxofilin protein and, therefore, are unable to locally remodel the cortical actin cytoskeleton, the junction travels retrogradely with the host cell membrane along the parasite surface allowing the formation of a functional vacuole. Kinetic measurements of the invasive trajectories strongly support a similar parasite driven force in both static and capped junctions, both of which lead to successful invasion. However, about 20% of toxofilin mutants fail to enter and eventually disengage from the host cell membrane while the secreted RhOptry Neck (RON2) molecules are posteriorally capped before being cleaved and released in the medium. By contrast in cells characterized by low cortex tension and high cortical actin dynamics junction capping and entry failure are drastically reduced.

Conclusions

This kinematic analysis newly highlights that to invade cells parasites need to engage their motor with the junction molecular complex where force is efficiently applied only upon proper anchorage to the host cell membrane and cortex.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号