首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
New 2-thiazolylimino-5-arylidene-4-thiazolidinones (compounds 4a-j), unsubstituted or carrying hydroxy, methoxy, nitro and chloro groups on the benzene ring, were synthesized and assayed in vitro for their antimicrobial activity against Gram positive and Gram negative bacteria, yeasts and mould. The compounds were very potent towards all tested Gram positive microorganisms (MIC ranging from 0.03 to 6 microg/mL in most of the cases) and Gram negative Haemophilus influenzae (MIC 0.15-1.5 microg/mL), whereas no effectiveness was exhibited against Gram negative Escherichia coli and fungi up to the concentration of 100 microg/mL. The 5-arylidene derivatives showed an antibacterial efficacy considerably greater than that of the parent 2-(thiazol-2-ylimino)thiazolidin-4-one 3, suggesting that the substituted and unsubstituted 5-arylidene moiety plays an important role in enhancing the antimicrobial properties of this class of compounds. The remarkable inhibition of the growth of penicillin-resistant staphylococci makes these substances promising agents also for the treatment of infections caused by microorganisms resistant to currently available drugs.  相似文献   

2.
A series of novel Schiff base derivatives have been designed and synthesized, and their biological activities were also evaluated as potential inhibitors of FabH. These compounds were assayed for antibacterial activity against Escherichia coli, Pseudomonas aeruginosa, Bacillus subtilis and Staphylococcus aureus. Compounds with potent antibacterial activities were tested for their E. coli FabH inhibitory activity. Compound 3v showed the most potent antibacterial activity with MIC of 1.56-6.25 μg/mL against the tested bacterial strains and exhibited the most potent E. coli FabH inhibitory activity with IC(50) of 4.3 μM. Docking simulation was performed to position compound 3v into the E. coli FabH active site to determine the probable binding conformation.  相似文献   

3.
A series of novel cinnamic acid secnidazole ester derivatives have been designed and synthesized, and their biological activities were also evaluated as potential inhibitors of FabH. These compounds were assayed for antibacterial activity against Escherichia coli, Pseudomonas aeruginosa, Bacillus subtilis and Staphylococcus aureus. Compounds with potent antibacterial activities were tested for their E. coli FabH inhibitory activity. Compound 3n showed the most potent antibacterial activity with MIC of 1.56-6.25 μg/mL against the tested bacterial strains and exhibited the most potent E. coli FabH inhibitory activity with IC?? of 2.5 μM. Docking simulation was performed to position compound 3n into the E. coli FabH active site to determine the probable binding conformation.  相似文献   

4.
Some alpha,omega-alkanediyl bis-dimethylammonium bromide compounds (gemini surfactants) referred as "m-s-m" have been synthesized, purified and characterized by usual spectroscopic methods. These compounds have been screened for antibacterial activity against Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus. Their activity was compared. The compounds tested showed excellent in vitro antibacterial activity against Staphylococcus aureus ranging from 1.5 to 20 microg/ml and had variable activity against E. coli with minimum minimum inhibitory concentration (MIC) of 50 microg/ml. These compounds are less active against P. aeruginosa. On the other hand, contrary to the antibacterial activity of these products against S. aureus, a relation between the MIC and the critical micellar concentration (CMC) was found and relationship between chain's Length and antibacterial activity was found.  相似文献   

5.
Development of new antimicrobial agents is a good solution to overcome drug-resistance problems. From this perspective, new quinoxaline derivatives bearing various bioactive heterocyclic moieties (thiadiazoles, oxadiazoles, pyrazoles and thiazoles) were designed and synthesized. The newly synthesized compounds were evaluated for their in vitro antibacterial activity against nine bacterial human pathogenic strains using the disc diffusion assay. In general, most of the synthesized compounds exhibited good antibacterial activities. The thiazolyl 11c displayed significant antibacterial activities against P. aeruginosa (MIC, 12.5 µg/mL vs levofloxacin 12.5 µg/mL). Molecular docking studies indicated that the synthesized compounds could occupy both p-amino benzoic acid (PABA) and pterin binding pockets of the dihydropteroate synthase (DHPS), suggesting that the target compounds could act by the inhibition of bacterial DHPS enzyme. The results provide important information for the future design of more potent antibacterial agents.  相似文献   

6.
In the present communication, naturally occurring phloroglucinol-monoterpene adducts, euglobals G1-G4 (3b/a and 4a/b) and 16 new analogues (13a/b-18a/b and 19-22) were synthesized by biomimetic approach. These synthetic compounds differ from natural euglobals in the nature of monoterpene and acyl functionality. All of these compounds were evaluated for their antibacterial, antifungal, antileishmanial and antimalarial activities. Analogue 17b possessed good antibacterial activity against methicillin-resistant Staphylococcus aureus, while analogues 19-22 possessed potent antifungal activity against Candida glabrata with IC50s ranging from 1.5 to 2.5 microg/mL. Euglobals along with all synthesized analogues exhibited antileishmanial activity. Amongst these, euglobal G2 (3a), G3 (4a) and analogues 13a and 14a showed potent antileishmanial activity with IC50s ranging from 2.8 to 3.9 microg/mL. Analogue 16a possessed antimalarial activity against chloroquine sensitive D6 clone of Plasmodium falciparum. None of the compounds showed toxicity against mammalian kidney fibroblasts (vero cells) upto the concentration of 4.76 microg/ml.  相似文献   

7.
In order to develop new anti-Helicobacter pylori agents, a series of N1-substituted 3,5-diphenyl pyrazolines P1-P13 was prepared and evaluated for their antibacterial activity. All synthesized compounds showed little or no activity against different species of Gram-positive and Gram-negative bacteria of clinical relevance and against various strains of pathogenic fungi. The same derivatives exhibited a significant degree of activity against a range of H. pylori strains, including those resistant to the reference compound metronidazole. Among the prepared compounds those with an N1-acetyl group and a 4-methoxy substituent in the 5-phenyl ring showed the best activity against H. pylori metronidazole resistant strains in the 1-4 microg/mL MIC range.  相似文献   

8.
A series of substituted 1,2,3,4-tetrahydropyrazino [1,2-a] indole derivatives have been synthesized and tested against the Gram positive and Gram negative strains of bacteria namely Staphylococcus aureus (MTCCB 737), Salmonella typhi (MTCCB 733), Pseudomonas aeruginosa (MTCCB 741), Streptomyces thermonitrificans (MTCCB 1824) and Escherichia coli (MTCCB 1652). All synthesized compounds showed mild to moderate activity. However, compounds 4d-f were found to have potent activity against pathogenic bacteria used in the study. Their MIC ranged from 3.75 to 60 microg/disc. In vitro toxicity tests demonstrated that toxicity of 4d-f was not significantly different than that of gentamycin. However, at higher concentration (1000-4000 microg/ml) difference was highly significant.  相似文献   

9.
Two classes of fluconazole derivatives, (a) carboxylic acid esters and (b) fatty alcohol and carbohydrate phosphate esters, were synthesized and evaluated in vitro against Cryptococcus neoformans, Candida albicans, and Aspergillus niger. All carboxylic acid ester derivatives of fluconazole (1a-l), such as O-2-bromooctanoylfluconazole (1g, MIC=111 microg/mL) and O-11-bromoundecanoylfluconazole (1j, MIC=198 microg/mL), exhibited higher antifungal activity than fluconazole (MIC > or = 4444 microg/mL) against C. albicans ATCC 14053 in SDB medium. Several fatty alcohol phosphate triester derivatives of fluconazole, such as 2a, 2b, 2f, 2g, and 2h, exhibited enhanced antifungal activities against C. albicans and/or A. niger compared to fluconazole in SDB medium. For example, 2-cyanoethyl-omega-undecylenyl fluconazole phosphate (2b) with MIC value of 122 microg/mL had at least 36 times greater antifungal activity than fluconazole against C. albicans in SDB medium. Methyl-undecanyl fluconazole phosphate (2f) with a MIC value of 190 microg/mL was at least 3-fold more potent than fluconazole against A. niger ATCC 16404. All compounds had higher estimated lipophilicity and dermal permeability than those for fluconazole. These results demonstrate the potential of these antifungal agents for further development as sustained-release topical antifungal chemotherapeutic agents.  相似文献   

10.
The absolute stereochemistry of the new antifungal and antibacterial antibiotic produced by Streptomyces sp.201 has been established by achieving the total synthesis of the product. A series of analogues have also been synthesized by changing the side chain and their bioactivity assessed against different microbial strains. Among them, 1e (R = C8H17) was found to be the most potent with MIC of 8 microg/mL against Mycobacterium tuberculosis, 12 microg/mL against Escherichia coli and 16 microg/mL against Bacillus subtilis 6 microg/mL against Proteus vulgaris. This was followed by 1b (R = C5H11) with MIC of 10-20 microg/mL range and 1d (R = C7H15) with MIC of 14-24 g/mL, whereas 1a (R = C4H9) and 1f (R = C18H35) were found to be completely inactive. Besides, 1c (R = C6H13) showed certain extent of antibacterial activity in the range of 24-50 microg/mL. Mycobacterium tuberculosis was very sensitive to 1e (R = C8H17) with MIC of 8 microg/mL. Antifungal activity of analogues 1d (R = C7H15) and 1e, (R = C8H17) against Fusarium oxysporum and Rhizoctonia solani were found promising with MFCs in the 15-18 microg/mL range.  相似文献   

11.
Macrocyclic peptidyl hydroxamates were designed, synthesized, and evaluated as peptide deformylase (PDF) inhibitors. The most potent compound exhibited tight, slow-binding inhibition of Escherichia coli PDF (K(I)(*)=4.4 nM) and had potent antibacterial activity against Gram-positive bacterium Bacillus subtilis (MIC=2-4 microg/mL).  相似文献   

12.
The antimicrobial activity of a methanol extract and isolated constituents of Mitracarpus scaber, a species used in folk medicine by West African native people, was evaluated against Staphylococcus aureus and Candida albicans strains. The mitracarpus methanol extract possesses both antibacterial and antimycotic activities (minimum inhibitory concentration-MIC 31.25 and 62.50 microg ml-, respectively). This extract was subsequently fractioned and monitored by bioassays leading to the isolation of seven compounds screened for antibacterial and antimycotic activities. Among these compounds, gallic acid and 3,4,5-trimethoxybenzoic acid inhibited the growth of Staph. aureus (MIC 3.90 and 0.97 microg ml-). 4-Methoxyacetophenone and 3,4,5-trimethoxyacetophenone effectively inhibited C. albicans (MIC 1.95 microg ml-). The other compounds (kaempferol-3-O-rutinoside, rutin and psoralen) which were also isolated showed low antibacterial and antimycotic activities (125-500 microg ml-).  相似文献   

13.
A series of N'-[3,4-disubstituted-1,3-thiazol-2(3H)-ylidene]-2-(pyrazin-2-yloxy)acetohydrazide 11-66 and N'-[(2Z)-3-(4-bromophenyl)-4-oxo-1,3-thiazolidin-2-ylidene]-2-(pyrazin-2-yloxy)acetohydrazide 68-74 were synthesized using appropriate synthetic route. The entire test compounds 11-66 and 68-74 were assayed in vitro for antibacterial activity against two different strains of Gram-negative (E. coli and S. typhi), Gram-positive (S. aureus and B. subtilis) bacteria and the antimycobacterial activity was evaluated against H(37)Rv strain of Mycobacterium tuberculosis. The minimum inhibitory concentration (MIC) was determined for test compounds and for reference standards. The test compounds showed significant antibacterial and antimycobacterial activity against the microbial strains used, when tested in vitro. In general, pyrazine ring and substituted thiazoline ring are essential for antimicrobial activity. Among the compounds tested, compounds 11, 12 and 40 were found to be most potent. The toxicity of most potent compounds 11, 12 and 40 were determined using hemolytic assay and minimal hemolytic concentration (MHCs) were determined. The test compounds were found to be nontoxic up to a dose level of 250 microg/mL.  相似文献   

14.
Series of flavones and methyl-4H-1-benzopyran-4-ones carrying mono or diamidinobenzimidazoles at different positions were synthesized and evaluated for antibacterial and antifungal activities against E. coli, S. aureus, MRSA (methicillin-resistant S. aureus), MRSE (methicillin-resistant S. epidermidis), S. faecalis and C. albicans, C. krusei. The results showed that while all diamidines are inactive, the compounds having monoamidinobenzimidazoles at the C-6 position of the 2-phenyl-4H-1-benzopyran-4-one have potent antibacterial activities, particularly, against Gram-positive bacteria. Compounds 23 and 22 exhibited the best inhibitory activity with MIC values of 1.56 microg/ml against S. aureus, MRSA, MRSE and 3.12 microg/ml against C. albicans, respectively.  相似文献   

15.
Deoxynegamycin (1b) is a protein synthesis inhibitor with activity against Gram-negative (GN) bacteria. A series of conformationally restricted analogs were synthesized to probe its bioactive conformation. Indeed, some of the constrained analogs were found to be equal or better than deoxynegamycin in protein synthesis assay (1b, IC(50)=8.2 microM; 44, IC(50)=6.6 microM; 35e(2), IC(50)=1 microM). However, deoxynegamycin had the best in vitro whole cell antibacterial activity (Escherichia coli, MIC=4-16 microg/mL; Klebsiella pneumoniae, MIC=8 microg/mL) suggesting that other factors such as permeation may also be contributing to the overall whole cell activity. A new finding is that deoxynegamycin is efficacious in an E. coli murine septicemia model (ED(50)=4.8 mg/kg), providing further evidence of the favorable in vivo properties of this class of molecules.  相似文献   

16.
In this study, a series of novel phenyl- and benzimidazole-substituted benzyl ethers were synthesized and evaluated for antibacterial and antifungal activities against Staphylococcus aureus, Methicillin-resistant S. aureus (MRSA), Escherichia coli, Candida albicans, and Candida krusei. Compound 6g exhibited the most potent antibacterial activity with lowest MIC values of 3.12 and 6.25 microg/mL against S. aureus and MRSA, respectively.  相似文献   

17.
Conjugates of antitubercular drug Isoniazid (hydrazide of isonicotinic acid), nicotinic and alpha-picolinic acid hydrazides and glycoside steviolbioside from the plant Stevia rebaudiana as well as the product of its acid hydrolysis, diterpenoid isosteviol, were synthesized. Besides, isosteviol hydrazide and hydrazone derivatives as well as conjugates containing two isosteviol moieties connected by dihydrazide linker were also obtained. Both initial compounds and their synthetic derivatives inhibit the growth of Mycobacterium tuberculosis (H37Rv in vitro). The minimum concentration at which the growth of M. tuberculosis was inhibited by 100% (MIC) for stevioside and steviolbioside equals 7.5 and 3.8 microg/mL, respectively. MIC values for conjugates of the hydrazides of pyridine carbonic acids and steviolbioside as well as isosteviol are in the ranges 5-10 and 10-20 microg/mL, respectively. Maximum inhibitory effect against M. tuberculosis showed the conjugates of isosteviol and adipic acid dihydrazide (MIC values ranged from 1.7 to 3.1 microg/mL). Antitubercular activity of the compounds studied is higher than the activity of antitubercular drug Pyrizanamide (MIC = 12.5-20 microg/mL) but lower than the activity of antitubercular drug Isoniazid (MIC = 0.02-0.04 microg/mL).  相似文献   

18.
Variously oxidized 12 natural abietanes, 6,7-dehydroferruginol methyl ether (3), ferruginol (5), 11-hydroxy-12-oxo-7,9(11),13-abietatriene (7), royleanone (9), demethyl cryptojaponol (12), salvinolone (14), sugiol methyl ether (16), sugiol (17), 5,6-dehydrosugiol methyl ether (19), 5,6-dehydrosugiol (20), 6beta-hydroxyferruginol (23), and taxodione (25) were synthesized. Antimicrobial activities of synthesized phenolic diterpenes and their related compounds against MRSA and VRE were evaluated. Phenols (12-hydroxyabieta-8,11,13-trien-6-one 22 and 23), catechols (12 and 14) and taxodione 25 showed potent activity with 4-10 microg/mL of MIC against MRSA and 4-16 microg/mL of MIC against VRE. (-)-Ferruginol showed more potent activity than natural type (+)-ferruginol. Quinone methide 7 showed the most potent activity with 0.5-1 microg/mL of MIC against both MRSA and VRE.  相似文献   

19.
Twenty-five 2-phenyl-5,6-dihydro-2H-thieno[3,2-c]pyrazol-3-ol derivatives were synthesized for evaluation as new inhibitors of bacterial cell wall biosynthesis. Many of them demonstrated good inhibitory activity against Staphylococcus aureus MurB, MurC and MurD enzymes in vitro and antimicrobial activity against gram-positive bacteria including MRSA, VRE and PRSP. However, when they were tested in the presence of 4% bovine serum albumin, the MIC values increased to greater than 128 microg/mL against PRSP. None of the compounds demonstrated activity against gram-negative bacteria at MIC <32 microg/mL.  相似文献   

20.
Vancomycin is mainly used as an antibacterial agent of last resort, but recently vancomycin-resistant bacterial strains have been emerging. Although new antimicrobials have been developed in order to overcome drug-resistant bacteria, many are structurally complex beta-lactams or quinolones. In this study, we aimed to create new anti-drug-resistance antibacterials which can be synthesized in a few steps from inexpensive starting materials. Since sulfa drugs function as p-aminobenzoic acid mimics and inhibit dihydropteroate synthase (DHPS) in the folate pathway, we hypothesized that sulfa derivatives would act as folate metabolite-mimics and inhibit bacterial folate metabolism. Screening of our sulfonanilide libraries, including benzenesulfonanilide-type cyclooxygenase-1-selective inhibitors, led us to discover benzenesulfonanilides with potent anti-methicillin-resistant Staphylococcus aureus (MRSA)/vancomycin-resistant Enterococcus (VRE) activity, that is, N-3,5-bis(trifluoromethyl)phenyl-3,5-dichlorobenzenesulfonanilide (16b) [MIC=0.5microg/mL (MRSA), 1.0microg/mL (VRE)], and 3,5-bis(trifluoromethyl)-N-(3,5-dichlorophenyl)benzenesulfonanilide (16c) [MIC=0.5microg/mL (MRSA), 1.0microg/mL (VRE)]. These compounds are more active than vancomycin [MIC=2.0microg/mL (MRSA), 125microg/mL (VRE)], but do not possess an amino group, which is essential for DHPS inhibition by sulfa drugs. These results suggested that the mechanism of antibacterial action of compounds 16b and 16c is different from that of sulfa drugs. We also confirmed the activity of these compounds against clinical isolates of Gram-positive bacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号