首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have tested the hypothesis that exocytosis is a possible export route for calcium from bovine adrenal medullary cells. After prelabelling cells in primary tissue culture with 45Ca, evoked 45Ca export and catecholamine secretion show the same time course, a similar fraction of the total pool of 45Ca and catecholamine is released, and the same concentrations of carbamylcholine or KCl are required for half-maximal triggered release. Increasing the osmolarity of the extracellular medium or treating the cells with botulinum toxin type D inhibits both evoked catecholamine secretion and 45Ca export to the same extent without inhibiting 45Ca influx. Incorporation of 45Ca into chromaffin granules is very slow, however, and incorporated 45Ca is not immediately releasable. 45Ca entering the cell during short-term stimulation is not found in the releasable pool during a second period of triggered secretion. Our data suggest that chromaffin granules are the largest pool of intracellular calcium in bovine adrenal medullary cells and that most of the calcium in chromaffin granules does not rapidly exchange with cytoplasmic Ca, but can be released directly by exocytosis. Exocytosis does not appear to play a major role in exporting Ca that enters the cell during short-term stimulation.  相似文献   

2.
Cultured chromaffin cells were preincubated with digitonin to deplete endogenous ATP from the cell cytoplasm. Catecholamine release from these digitonin-pretreated cells was then studied in the presence and absence of exogenous ATP to elucidate a possible involvement of the cytoplasmic ATP in the exocytotic process. The preincubation of the cells with digitonin in the ATP-free permeabilizing medium resulted in a marked decline of the releasing response to a calcium challenge. Furthermore, the declined activity of catecholamine release caused by digitonin pretreatment was restored by the presence of ATP, but not by other adenine nucleotides, and this recovery was observed in a manner dependent on the concentration of ATP. These findings, therefore, seem to indicate that a decrease in the releasing activity of the digitonin-pretreated cells may be due to the removal of endogenous ATP from the cytoplasmic space of the cells, thus suggesting that the cytoplasmic ATP may be involved in the exocytotic mechanism of catecholamine secretion.  相似文献   

3.
Increased arachidonic acid release occurred during activation of catecholamine secretion from cultured bovine adrenal medullary chromaffin cells. The nicotinic agonist 1,1-dimethyl-4- phenylpiperazinium (DMPP) caused an increased release of preincubated [3H]arachidonic acid over a time course which corresponded to the stimulation of catecholamine secretion. Like catecholamine secretion, the DMPP-induced [3H]arachidonic acid release was calcium-dependent and was blocked by the nicotinic antagonist mecamylamine. Depolarization by elevated K+, which induced catecholamine secretion, also stimulated arachidonic acid release. Because arachidonic acid release from cells probably results from phospholipase A2 activity, our findings indicate that phospholipase A2 may be activated in chromaffin cells during secretion.  相似文献   

4.
A procedure is described for the establishment of stable primary cultures of bovine chromaffin cells on microcarrier beads. The cells flatten and send out processes with varicosities over a few days and maintain their catecholamine content for 2 weeks. The beads may be incorporated into a superfusion apparatus with a chamber volume of about 150 microliters, enabling the efficient perfusion of a high density of cells. The response to the introduction of nicotine and high potassium into the perfusing medium is shown to be more rapid and more transient than hitherto described, with each secretagogue producing a different degree of preferential stimulation of noradrenaline-secreting cells.  相似文献   

5.
Abstract: A pharmacological study was made of the effects of veratridine and lasalocid on the release of catecholamines, acetylcholinesterase (AChE) and dopamine-β-hydroxylase (DBH) from cultures of isolated bovine adrenal chromaffin cells. Exposure of the cultures to veratridine resulted in concomitant release of catecholamines and AChE into the external medium in a dose-dependent and Ca2 +-dependent manner. A Ca2+ iono-phore, lasalocid, also produced a dose-dependent and parallel release of both catecholamines and AChE. The release of the two components was accompanied by release of DBH. The present results provide pharmacological evidence for a parallel release of catecholamines, AChE, and DBH from cultured adrenal chromaffin cells, and the stoichiometry of the release evoked by different secretagogues suggests that AChE and catecholamines are released from different cellular compartments.  相似文献   

6.
Hyperosmotic solutions inhibit exocytosis of catecholamine from adrenal chromaffin cells at a step after Ca2+ entry into the cells. The possibility that the inhibition resulted from an inability of shrunken secretory granules to undergo exocytosis was investigated in cells with plasma membranes permeabilized by digitonin. The osmoticants and salts used in this study rapidly equilibrated across the plasma membrane and bathed the intracellular organelles. When sucrose was the osmoticant, secretion was not significantly inhibited unless the osmolality was raised above 1,000 mOs. When the osmolality was raised with the tetrasaccharide stachyose or a low-molecular-weight maltodextrin fraction (average size a tetrasaccharide), one-half maximal inhibition occurred at 900-1,000 mOs. Prior treatment of permeabilized cells with Ca2+ in hyperosmotic solution did not result in enhanced secretion when cells were restored to normal osmolality. Increased concentrations of potassium glutamate or sodium isethionate were more potent than carbohydrate in inhibiting secretion. Half-maximal inhibition occurred at 600-700 mOs or when the ionic strength was approximately doubled. The inhibition by elevated potassium glutamate also occurred when the osmolality was kept constant with sucrose. Increasing the ionic strength did not alter the Ca2+ sensitivity of the secretory response. Reducing the ionic strength by substituting sucrose for salt reduced the Ca2+ concentration required for half-maximal stimulated secretion from approximately 1.2 microM to 0.5 microM. Chromaffin granules, the secretory granules, are known to shrink in hyperosmotic solution. The experiments indicate that shrunken chromaffin granules can undergo exocytosis and suggest that in intact cells elevated ionic strength rather than chromaffin granule shrinkage contributes to the inhibition of secretion by hyperosmotic solutions.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
The protonophores carbonyl cyanide p-trifluoromethoxyphenylhydrazone (FCCP) and carbonyl cyanide m-chlorophenylhydrazone (CCCP) stimulated the synthesis of 14C-catecholamines from [14C]tyrosine in cultured bovine adrenal medullary cells. The stimulatory effect of CCCP but not of FCCP was partially dependent on extracellular Ca2+. CCCP but not FCCP increased the influx of 45Ca2+ to the cells. When cells were incubated with either CCCP or FCCP (0.01-0.2 microgram/ml), the intracellular pH fell from 7.2 to 6.3-6.5 and catecholamine synthesis increased. Tyrosine hydroxylase activity in a soluble fraction prepared from cultured adrenal medullary cells was measured after incubation of the cells with FCCP or CCCP. Although FCCP did not affect the activity of the enzyme, CCCP caused a stable activation of it which was dependent on extracellular Ca2+. Since the optimal pH of soluble tyrosine hydroxylase is around 6.0 in adrenal medullary cells, FCCP may increase the synthesis of catecholamines by shifting the intracellular pH toward it. In addition to this mechanism, CCCP may enhance the synthesis of catecholamines by a Ca2+-dependent mechanism.  相似文献   

8.
Abstract: Catecholamine secretion has been measured with electrochemical techniques from isolated, single adrenal medullary chromaffin cells with carbon-fiber microelectrodes. The electrode tip, which is of similar dimensions to the cell, is placed adjacent to the cell to enable the measurement of local secretion. Secretion is caused by exposing the cell to nanoliter volumes of solution containing nicotinic receptor agonists or depolarizing agents. The identification of secreted substances is made with cyclic voltammetry at both bare electrodes and electrodes coated with a perfluorinated cationexchange polymer. Catecholamine secretion is induced by nicotine (10–500 μ M ), carbamylcholine (1 m M ), and K+ (60 m M ). All agents that induce secretion lead to a broad envelope of secreted catecholamines on which sharp concentration spikes are superimposed. The concentration spikes can be monitored with a time resolution of tens of milliseconds when the electrodes are used in the amperometric mode. Release induced by nicotine and K+ is inhibited by Cd2+ (0.5 m M ), and hexamethonium selectively blocks the nicotineinduced secretion. The actions of nicotine are found to continue for a longer period of time than those of the other secretagogues tested.  相似文献   

9.
Regulation of Proenkephalin Synthesis in Adrenal Medullary Chromaffin Cells   总被引:4,自引:4,他引:0  
The synthesis of proenkephalin was assessed in primary cultures of bovine adrenal medullary chromaffin cells by incubation of the cells with [35S]methionine, digestion of proenkephalin-derived peptides with trypsin and carboxy-peptidase B, and quantitation of radioactivity incorporated into Met-enkephalin following reversed-phase HPLC. Nicotine, histamine, and vasoactive intestinal peptide each enhanced the rate of proenkephalin synthesis approximately 10-fold when examined between 16 and 32 h after the drug or hormone addition. Inclusion of nifedipine (1 microM) partially blocked the stimulatory effect of nicotine, but not that of vasoactive intestinal peptide or histamine, or proenkephalin synthesis. Theophylline, tetrabenazine, and angiotensin II also increased the rate of proenkephalin synthesis (three- to eight-fold). These increases in the apparent rate of proenkephalin synthesis were not attributable to altered [35S]methionine specific radioactivity or rates of turnover and did not reflect similar increases in total protein synthesis. The half-life for turnover of Met-enkephalin sequences was 3-4 days in the cultured chromaffin cell. These studies directly show that proenkephalin synthesis is the primary regulatory step in control of chromaffin cell opioid peptide content.  相似文献   

10.
The distribution and secretion of atrial natriuretic peptides (ANPs) were investigated in bovine adrenal medulla. (1) Cultured bovine adrenal medullary cells (2 x 10(6)/dish) contained 100.4 +/- 6.0 fmol of immunoreactive ANP (IR-ANP) and 207.3 +/- 6.6 nmol of catecholamines as epinephrine plus norepinephrine. (2) Stimulation of nicotinic but not muscarinic acetylcholine receptors caused a cosecretion of IR-ANP and catecholamines corresponding to the ratio of IR-ANP to catecholamines in cultured bovine adrenal medullary cells. (3) Carbachol-stimulated secretion of IR-ANP was dependent on the presence of extracellular Ca2+. (4) Chromaffin granules isolated from bovine adrenal medulla contained large amounts of IR-ANP and catecholamines, in the same ratio as did cultured adrenal medullary cells. (5) Reverse-phase HPLC analysis showed that both stored and secreted IR-ANP consisted of two components, which eluted at the position of ANP(99-126) or ANP(1-126). These results indicate that ANPs are stored as ANP(99-126) and ANP(1-126) in chromaffin granules, and are cosecreted in parallel with catecholamines in a Ca2+-dependent manner by the stimulation of nicotinic acetylcholine receptors.  相似文献   

11.
Lead buffers (citrate and Tiron) were used to investigate the effects of low concentrations (0.1-6 microM) of Pb2+ on stimulus-secretion coupling in isolated bovine chromaffin cells. Nicotinic agonists and high K elicit secretion by enhancing Ca2+ influx into chromaffin cells. Pb2+ inhibited the catecholamine secretion in response to 500 microM carbachol and 77 mM K+ depolarization but was without significant effect on basal secretion. Pb2+ also inhibited the influx of 45Ca occurring in response to these agents. The K0.5 values for inhibition suggest that the carbachol-evoked flux is more sensitive to Pb2+ than influx in response to a direct depolarization. When extracellular calcium was lowered in the absence of Pb2+, both secretion and 45Ca entry were reduced. The effects of Pb2+ were comparable to those of lowered Ca2+. 22Na influx through nicotinic receptor-mediated channels, measured in the presence of tetrodotoxin (2 microM) and ouabain (50 microM), was inhibited by Pb2+. The results suggest that Pb2+ inhibits exocytotic catecholamine secretion by inhibiting Ca2+ influx. The differential sensitivity to Pb2+ of K- and carbachol-evoked 45Ca flux, coupled with the 22Na measurements, indicates that Pb2+ inhibits the movement of ions through acetylcholine-induced channels as well as through voltage-sensitive calcium channels.  相似文献   

12.
A system to discriminate the real-time dynamics of the secretory function in cultured adrenal chromaffin cells, using a cell bed perfusion technique and an amperometric detector, was established. Examination of basal conditions revealed that the electrode potential and flow rate are crucial factors for monitoring precise dynamics of the secretory process. Stimulation of the cells either with acetylcholine (ACh) or with high K+ concentration caused a transient current response. The current responses showed concentration dependence for both stimuli, and also showed a high correlation with the amount of catecholamines (CA) in the respective peak fraction of perfusate. Either prolonged cholinergic stimulation or maintained depolarization produced a transient response, which is not attributable to a depletion of releasable storage of CA as indicated by double-stimulation experiments. Stimulation with high K+ concentration evoked an additional release of CA even after the cellular response to prolonged ACh was inactivated, whereas maintained depolarization with high K+ produced both facilitatory and inhibitory effects on the cell responsiveness to ACh. Most probably the transient natures of the secretory responses to ACh and to high K+ are mediated by different mechanisms. All the results suggest that the direct monitoring is profitable for studies on the regulatory mechanisms of the secretory function.  相似文献   

13.
Histamine activation of H1 receptors stimulates 3H release from cultured bovine adrenal chromaffin cells preloaded with [3H]noradrenaline. The initial (1-min) release induced by a high concentration of histamine was unaffected by the removal of extracellular Ca2+, whereas the more sustained response (10 min) was largely inhibited. In contrast, release induced by nicotine was dependent on extracellular Ca2+ at all times. The protein kinase inhibitor staurosporine inhibited both the initial and sustained (10-min) phases of histamine-induced release (IC50 in the region of 200 nM) but was ineffective against a direct depolarizing stimulus (56 mM K+). In contrast, the calmodulin antagonist trifluoperazine was equally effective against both stimuli. These data indicate that although a staurosporine-sensitive event (perhaps involving protein kinase C) is essential for coupling histamine receptor activation to the release processes, it is not essential for exocytosis itself. A further distinction between histamine- and depolarization-induced release was demonstrated by the differential effect of the guanine nucleotide-binding protein inhibitor pertussis toxin. Pretreatment with pertussis toxin (0.1 microgram/ml for 16 h) enhanced depolarization-induced release by approximately 1.5-fold. This pertussis toxin pretreatment was, however, approximately twofold as effective in potentiating histamine-evoked release. Thus, the characteristics of the histaminergic response are distinct from those of a depolarizing stimulus, perhaps indicating the involvement of different mechanisms in the release process.  相似文献   

14.
Abstract: We used cultured rat chromaffin cells to test the hypothesis that Ca2+ entry but not release from internal stores is utilized for exocytosis. Two protocols were used to identify internal versus external Ca2+ sources: (a) Ca2+ surrounding single cells was transiently displaced by applying agonist with or without Ca2+ from an ejection pipette. (b) Intracellular stores of Ca2+ were depleted by soaking cells in Ca2+-free plus 1 mM EGTA solution before transient exposure to agonist plus Ca2+. Exocytosis from individual cells was measured by microelectrochemical detection, and the intracellular Ca2+ concentration ([Ca2+]i) was measured by indo-1 fluorescence. KCl (35 mM) and nicotine (10 µM) caused an immediate increase in [Ca2+]i and secretion in cells with or without internal Ca2+ stores, but only when applied with Ca2+ in the ejection pipette. Caffeine (10 mM) and muscarine (30 µM) evoked exocytosis whether or not Ca2+ was included in the pipette, but neither produced responses in cells depleted of internal Ca2+ stores. Pretreatment with ryanodine (0.1 µM) inhibited caffeine- but not muscarine-stimulated responses. Elevated [Ca2+]i and exocytosis exhibited long latency to onset after stimulation by caffeine (2.9 ± 0.38 s) or muscarine (2.2 ± 0.25 s). However, the duration of caffeine-evoked exocytosis (7.1 ± 0.8 s) was significantly shorter than that evoked by muscarine (33.1 ± 3.5 s). The duration of caffeine-evoked exocytosis was not affected by changing the application period between 0.5 and 30 s. An ~20-s refractory period was found between repeated caffeine-evoked exocytotic bursts even though [Ca2+]i continued to be elevated. However, muscarine or nicotine could evoke exocytosis during the caffeine refractory period. We conclude that muscarine and caffeine mobilize different internal Ca2+ stores and that both are coupled to exocytosis in rat chromaffin cells. The nicotinic component of acetylcholine action depends primarily on influx of external Ca2+. These results and conclusions are consistent with our original observations in the perfused adrenal gland.  相似文献   

15.
Both nicotine and histamine have been reported to increase cyclic AMP levels in chromaffin cells by Ca(2+)-dependent mechanisms. The present study investigated whether Ca2+ was an adequate and sufficient signal for increasing cyclic AMP in cultured bovine adrenal medullary cells. Depolarization with 50 mM K+ caused a two- to three-fold increase in cellular cyclic AMP levels over 5 min, with no change in extracellular cyclic AMP. This response was abolished by omission of extracellular Ca2+ and by 100 microM methoxyverapamil, and was unaffected by 1 microM tetrodotoxin and by 1 mM isobutylmethylxanthine. Veratridine (40 microM) also increased cellular cyclic AMP levels by two- to fourfold. This response was abolished by either methoxyverapamil or tetrodotoxin. The Ca2+ ionophore A23187 (10-50 microM) had little or no effect on cellular cyclic AMP levels. When the concentration of K+ used to depolarize the cells was reduced to 12-15 mM, the catecholamine release was similar to that induced by 50 microM A23187, and the cyclic AMP response was almost abolished. The results suggest that Ca2+ entry into chromaffin cells is a sufficient stimulus for increasing cellular cyclic AMP production. The possible involvement of a Ca2+/calmodulin-dependent isozyme of adenylate cyclase is discussed.  相似文献   

16.
The regulatory role of ascorbic acid in norepinephrine biosynthesis was studied using digitonin-permeabilized chromaffin cells. When permeabilized chromaffin cells were incubated with [3H]3,4-dihydroxyphenylethylamine ([3H]dopamine) in calcium-free medium, the amounts of radioactive dopamine and norepinephrine measured in the cell fraction were increased as a function of incubation time and dopamine concentration. Both the accumulation of dopamine and the formation of norepinephrine were shown to require the presence of Mg-ATP in the medium. These results indicate that the permeabilization of chromaffin cells by digitonin treatment does not disrupt the functions of chromaffin granules, including dopamine uptake, norepinephrine formation, and storage of these amines. Using this permeabilized cell system, the effect of ascorbic acid on the rates of dopamine uptake and hydroxylation was investigated. The formation of norepinephrine was stimulated by ascorbic acid at concentrations of 0.5-2 mM in the presence of Mg-ATP. By contrast, dopamine uptake was not affected by the presence or absence of ascorbic acid in the medium. These findings provide evidence that ascorbic acid may stimulate the conversion of dopamine to norepinephrine by increasing dopamine beta monooxygenase activity rather than by increasing the substrate supply of dopamine. These observations also suggest that the rate of norepinephrine biosynthesis in adrenal medullary cells may be regulated by the concentration of ascorbic acid within the cell cytoplasm.  相似文献   

17.
Incubation of cultured bovine adrenal medullary cells in Na+-free sucrose medium or in Na+-free Cs+ medium enhanced the synthesis of 14C-catecholamines from [14C]tyrosine about two- to threefold or sixfold, respectively. The increment of 14C-catecholamine synthesis produced by Na+-free medium was partially dependent on the presence of Ca2+ in the medium. Dibutyryl cyclic AMP also stimulated the synthesis of 14C-catecholamines in adrenal medullary cells, and the effects of Na+ removal and dibutyryl cyclic AMP (5 mM) on the synthesis were almost additive. The intracellular pH measured by using a weak acid 5,5-dimethyloxazolidine-2,4-dione was 7.14 in control cells and when Na+ was replaced by sucrose or Cs+, it shifted down to 6.56 or 5.66, respectively. The fall in intracellular pH and the stimulation of 14C-catecholamine synthesis were similarly dependent on the concentration of Na+ in the medium. The optimal pH of soluble tyrosine hydroxylase was 5.5-6.0 both in control cells and in cells incubated in Na+-free medium. These results suggest that removal of extracellular Na+ increases the synthesis of catecholamines, at least in part, by shifting the intracellular pH toward the optimal pH of tyrosine hydroxylase.  相似文献   

18.
Abstract: Amperometric detection of exocytosis at single chromaffin cells has shown that the distribution of spike areas, or quantal size, is dependent on the volume and catecholamine concentration of individual secretory vesicles. The present work offers an alternate, simplified model to analyze the current spikes due to single exocytotic events. When the cube root of these spike areas is plotted as a histogram, a Gaussian distribution is obtained for chromaffin cells and also mast, pheochromocytoma, and pancreatic β-cells. It was found that the relative SD of these distributions is similar to that for the vesicular radii, which also have a Gaussian distribution in all four cell types. In addition, this model was used to evaluate conditions where the quantal size of individual events was altered. When chromaffin cells were maintained in culture for <6 days, spikes of approximately double the quantal size were obtained on repeated exposure to 60 m M K+. The results suggest a heterogeneous distribution of catecholamine-containing vesicles at later days in culture is responsible for this alteration.  相似文献   

19.
The relationship between catecholamine secretion and arachidonic acid release from digitonin-treated chromaffin cells was investigated. Digitonin renders permeable the plasma membranes of bovine adrenal chromaffin cells to Ca2+, ATP, and proteins. Digitonin-treated cells undergo exocytosis of catecholamine in response to micromolar Ca2+ in the medium. The addition of micromolar Ca2+ to digitonin-treated chromaffin cells that had been prelabeled with [3H]arachidonic acid caused a marked increase in the release of [3H]arachidonic acid. The time course of [3H]arachidonic acid release paralleled catecholamine secretion. Although [3H]arachidonic acid release and exocytosis were both activated by free Ca2+ in the micromolar range, the activation of [3H]arachidonic acid release occurred at Ca2+ concentrations slightly lower than those required to activate exocytosis. Pretreatment of the chromaffin cells with N-ethylmaleimide (NEM) or p-bromophenacyl bromide (BPB) resulted in dose-dependent inhibition of 10 microM Ca2+-stimulated [3H]arachidonic acid release and exocytosis. The IC50 of NEM for both [3H]arachidonic acid release and exocytosis was 40 microM. The IC50 of BPB for both events was 25 microM. High concentrations (5-20 mM) of Mg2+ caused inhibition of catecholamine secretion without altering [3H]arachidonic acid release. A phorbol ester that activates protein kinase C, 12-O-tetradecanoylphorbol-13-acetate (TPA), caused enhancement of both [3H]arachidonic acid release and exocytosis. The findings demonstrate that [3H]arachidonic acid release is stimulated during catecholamine secretion from digitonin-treated chromaffin cells and they are consistent with a role for phospholipase A2 in exocytosis from chromaffin cells. Furthermore the data suggest that protein kinase C can modulate both arachidonic acid release and exocytosis.  相似文献   

20.
Abstract: As adrenal medullary chromaffin cells express imidazoline binding sites in the absence of α2-adrenergic receptors, these cells provide an ideal system in which to determine whether imidazolines can influence catecholamine gene expression through nonadrenergic receptors. This study evaluates the ability of clonidine and related drugs to regulate expression of the gene for the epinephrine-synthesizing enzyme phenylethanolamine N -methyltransferase (PNMT) in the rat adrenal gland and in bovine adrenal chromaffin cell cultures. In vivo, PNMT and tyrosine hydroxylase (TH) mRNA levels increase in rat adrenal medulla after a single injection of clonidine. Clonidine also dose-dependently stimulates PNMT mRNA expression in vitro in primary cultures of bovine chromaffin cells, with a threshold dose of 0.1 μ M . Other putative imidazoline receptor agonists, including cimetidine, rilmenidine, and imidazole-4-acetic acid, likewise enhance PNMT mRNA production showing relative potencies that correlate with their binding affinities at chromaffin cell I1-imidazoline binding sites. The effects of clonidine on PNMT mRNA appear to be distinct from and additive with those exerted by nicotine. Moreover, neither nicotinic antagonists nor calcium channel blockers, which attenuate nicotine's influence on PNMT mRNA production, diminish clonidine's effects on PNMT mRNA. Although 100 μ M clonidine diminishes nicotine-stimulated release of epinephrine and norepinephrine in chromaffin cells, this effect appears unrelated to stimulation of imidazoline receptor subtypes. This is the first report to link imidazoline receptors to neurotransmitter gene expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号