首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
We have developed X-ray refraction-based computed tomography (CT) that is able to visualize soft tissue in between hard tissue. The experimental system consists of Si(220) diffraction double-crystals and is called the DEI (diffraction-enhanced imaging) method, in which the object is located between the crystals and a CCD camera to acquire data as 360 X-ray images. The X-ray energy used was 17.5 keV. The algorithm used to reconstruct CT images was developed by A. Maksimenko and colleagues. We successfully visualized articular cartilage and the distribution of bone marrow, which are inner structures. Our method has much higher contrast compared to the conventional absorption-based CT system.  相似文献   

2.
In this paper X-ray computed tomography imaging data is used to perform nondestructive tree-ring width measurements in three archaeological wooden samples. Measurements of the curvilinear-tree-ring widths are performed using two approaches: firstly, measuring manually the distance between two points on two consecutive tree-rings along two orthogonal radii and, secondly, using a recently proposed computational approach which averages all calculated pairwise radial distances between two consecutive tree-rings along the whole tree-ring profile. The results show that the irregularity of the tree-ring shape is an important factor to be considered in performing curvilinear-tree-ring measurements. For irregular shaped tree-rings, deviations up to 1.15 mm were observed between the output of both measurement’s approaches. It is concluded that tree-ring width measurements along only two orthogonal radial rays are not always accurate enough and therefore averaging along the whole tree-ring profile is recommended.  相似文献   

3.
FTIR spectroscopic imaging in ATR (Attenuated Total Reflection) mode is a powerful tool for studying biomedical samples. This paper summarises recent advances in the applications of ATR-FTIR imaging to dissolution of pharmaceutical formulations and drug release. The use of two different ATR accessories to obtain chemical images of formulations in contact with water as a function of time is demonstrated. The innovative use of the diamond ATR accessory allowed in situ imaging of tablet compaction and dissolution. ATR-FTIR imaging was also applied to obtain images of the surface of skin and the spatial distribution of protein and lipid rich domains was obtained. Chemical images of cross-section of rabbit aorta were obtained using a diamond ATR accessory and the possibility of in situ imaging of arterial samples in contact with aqueous solution was demonstrated for the first time. This experiment opens an opportunity to image arterial samples in contact with solutions containing drug molecules. This approach may help in understanding the mechanisms of treatment of atherosclerosis.  相似文献   

4.
FTIR spectroscopic imaging in ATR (Attenuated Total Reflection) mode is a powerful tool for studying biomedical samples. This paper summarises recent advances in the applications of ATR-FTIR imaging to dissolution of pharmaceutical formulations and drug release. The use of two different ATR accessories to obtain chemical images of formulations in contact with water as a function of time is demonstrated. The innovative use of the diamond ATR accessory allowed in situ imaging of tablet compaction and dissolution. ATR-FTIR imaging was also applied to obtain images of the surface of skin and the spatial distribution of protein and lipid rich domains was obtained. Chemical images of cross-section of rabbit aorta were obtained using a diamond ATR accessory and the possibility of in situ imaging of arterial samples in contact with aqueous solution was demonstrated for the first time. This experiment opens an opportunity to image arterial samples in contact with solutions containing drug molecules. This approach may help in understanding the mechanisms of treatment of atherosclerosis.  相似文献   

5.
Physiological morphometry is a critical factor in the flow dynamics in small airways. In this study, we visualized and analyzed the three-dimensional structure of the small airways without dehydration and fixation. We developed a two-step method to visualize small airways in detail by staining the lung tissue with a radiopaque solution and then visualizing the tissue with a cone-beam microfocal X-ray computed tomographic (CT) system. To verify the applicability of this staining and CT imaging (SCT) method, we used the method to visualize small airways in excised rat lungs. By using the SCT method to obtain continuous CT images, three-dimensional branching and merging bronchi ranging from 500 to 150 microm (the airway generation=8-16) were successfully reconstructed. The morphometry of the small airways (diameter, length, branching angle and gravity angle between the gravity direction and airway vector) was analyzed using the three-dimensional thinning algorithm. The diameter and length exponentially decreased with the airway generation. The asymmetry of the bifurcation decreased with generation and one branching angle decided the other pair branching angle. The SCT method is the first reported method that yields faithful high-resolution images of soft tissue geometry without fixation and the three-dimensional morphometry of small airways is useful for studying the biomechanical dynamics in small airways.  相似文献   

6.
7.
High energy synchrotron X-ray scattering was developed for reconstruction of specimen cross-sections. The technique was applied to a model specimen of cortical bone containing a capillary tube of silicon, and reconstructions were produced with either full diffraction rings or texture-related subsets of a given ring. The carbonated apatite (cAp) 00.2 and 22.2 reconstructions and the Si 311 reconstructions agreed with absorption-based reconstructions from the measured X-ray transmissivity recorded during diffraction pattern acquisition and from reconstructions produced subsequently of the same specimen using a commercial microCT (microComputed Tomography) scanner.  相似文献   

8.
This report provides a brief overview of aspects of training nonhuman primates who have been, and continue to be, used in this laboratory. The research context involves applied behavioral studies in which animals are trained to perform complex operant behavioral sequences, often in their homecage environment. In such studies, animals have freedom to choose whether to engage in appetitively reinforced behavioral tests that employ neither food deprivation nor fluid management. This background of operant conditioning has provided an insight to, and a context for, animal training both as an adjunct to general laboratory management and as a way to expedite scientific procedures. Thus, training has potential implications for both well-being and scientific quality, although it must be considered an adjunct to the provision of socialization with conspecifics in high quality diverse housing systems and not as an alternative to such provision. The importance of discussion and consideration of alternative procedures cannot be overemphasized.  相似文献   

9.
Linear-array photoacoustic computed tomography (LA-PACT), for its flexibility and simplicity, has great potential in providing anatomical and functional information of tissues. However, the limited coverage view impedes the LA-PACT obtaining high-quality images. In this study, a photoacoustic tomographic system with a hyperbolic-array transducer was developed for stereoscopic PA imaging of carotid artery. The hyperbolic-array PACT increases the receiving sensitivity for PA signal detection due to its transducer's geometric structure matching with the spherical wave. The control phantom experiment shows that the proposed system can expand the angular coverage of ∼1/3 more than that of the LA-PACT system, and the volumetric PA images of rat's carotid artery demonstrates the potential of the system for carotid artery imaging. Furthermore, volumetric imaging of the human forearm verifies that the system has significant capability in human imaging, which indicates that it has bright prospect for assisting diagnosis in the vascular disease.  相似文献   

10.
Airway compliance is a key factor in understanding lung mechanics and is used as a clinical diagnostic index. Understanding such mechanics in small airways physiologically and clinically is critical. We have determined the "morphometric change" and "localized compliance" of small airways under "near"-physiological conditions; namely, the airways were embedded in parenchyma without dehydration and fixation. Previously, we developed a two-step method to visualize small airways in detail by staining the lung tissue with a radiopaque solution and then visualizing the tissue with a cone-beam microfocal X-ray computed tomography system (Sera et al. J Biomech 36: 1587-1594, 2003). In this study, we used this technique to analyze changes in diameter and length of the same small airways ( approximately 150 microm ID) and then evaluated the localized compliance as a function of airway generation (Z). For smaller (<300-microm-diameter) airways, diameter was 36% larger at end-tidal inspiration and 89% larger at total lung capacity; length was 18% larger at end-tidal inspiration and 43% larger at total lung capacity than at functional residual capacity. Diameter, especially at smaller airways, did not behave linearly with V(1/3) (where V is volume). With increasing lung pressure, diameter changed dramatically at a particular pressure and length changed approximately linearly during inflation and deflation. Percentage of airway volume for smaller airways did not behave linearly with that of lung volume. Smaller airways were generally more compliant than larger airways with increasing Z and exhibited hysteresis in their diameter behavior. Airways at higher Z deformed at a lower pressure than those at lower Z. These results indicated that smaller airways did not behave homogeneously.  相似文献   

11.
Dedicated high-resolution small animal systems have recently emerged as important new tools for laboratory animal research. These imaging systems permit researchers to noninvasively screen animal models for mutations or pathologies and to monitor disease progression and response to therapy. The authors survey various small animal imaging modalities, including MRI, PET, SPECT, and microCT, and discuss several representative microCT mouse imaging studies.  相似文献   

12.
The implementation on a generalized image processor of a cellular logic package that performs non-recursive cellular-logic operations (CLOs) in real time is described. This system takes advantage of up to 20 512 X 512 X 8-bit memory planes within the image processor and can manipulate cells with up to 256 symbolic states. The flexibility of the image processor allows the use of an expanded cellular transition set, beyond bit-on or bit-off, as well as application-specific neighborhood configurations. The use of concurrent data-dependent global calculations, including CLO iteration termination control, is described. The array processor implementation specifics are discussed. This general cellular logic package is applied to biomedical images in the Image Processing Laboratory, Department of Radiological Sciences, University of California at Los Angeles. Geometric information is acquired from the images using real-time operators on the image array processor. This information includes image segmentation, area calculation, object counting, centroid determination and shape analysis. Initial clinical results are presented, and possible future medical applications are discussed.  相似文献   

13.
Electron tomography allows computing three-dimensional (3D) reconstructions of objects from their projections recorded at several angles. Combined with transmission electron microscopy, electron tomography has contributed greatly to the understanding of subcellular structures and organelles. Performed on frozen-hydrated samples, electron tomography has yielded useful information about complex biological structures. Combined with energy filtered transmission electron microscopy (EFTEM) it can be used to analyze the spatial distribution of chemical elements in biological or material sciences samples. In the present review, we present an overview of the requirements, applications, and perspectives of electron tomography in structural biology.Translated from Biokhimiya, Vol. 69, No. 11, 2004, pp. 1497–1505.Original Russian Text Copyright © 2004 by Marco, Boudier, Messaoudi, Rigaud.  相似文献   

14.
A noninvasive method to determine postprandial fatty acid tissue partition may elucidate the link between excess dietary fat and type 2 diabetes. We hypothesized that the positron-emitting fatty acid analog 14(R,S)-[(18)F]fluoro-6-thia-heptadecanoic acid ((18)FTHA) administered orally during a meal would be incorporated into chylomicron triglycerides, allowing determination of interorgan dietary fatty acid uptake. We administered (18)FTHA orally at the beginning of a standard liquid meal ingested in nine healthy men. There was no significant (18)FTHA uptake in the portal vein and the liver during the 1st hour. Whole body PET/CT acquisition revealed early appearance of (18)FTHA in the distal thoracic duct, reaching a peak at time 240 min. (18)FTHA mean standard uptake value increased progressively in the liver, heart, quadriceps, and subcutaneous and visceral adipose tissues between time 60 and 240 min. Most circulating (18)F activity between time 0 and 360 min was recovered into chylomicron triglycerides. Using Triton WR-1339 treatment in rats that received (18)FTHA by gavage, we confirmed that >90% of this tracer reached the circulation as triglycerides. This novel noninvasive method to determine tissue dietary fatty acid distribution in humans should prove useful in the study of the mechanisms leading to lipotoxicity.  相似文献   

15.
16.
17.
We report on the first experimental results of helical differential phase-contrast computed tomography (helical DPC-CT) with a laboratory X-ray tube source and a Talbot–Lau grating interferometer. The results experimentally verify the feasibility of helical data acquisition and reconstruction in phase-contrast imaging, in analogy to its use in clinical CT systems. This allows fast and continuous volumetric scans for long objects with lengths exceeding the dimension of the detector. Since helical CT revolutionized the field of medical CT several years ago, we anticipate that this method will bring the same significant impact on the future medical and industrial applications of X-ray DPC-CT.  相似文献   

18.
19.
AbstractWe applied modern molecular and functional imaging to the pretreatment assessment of lung cancer using combined dynamic contrast-enhanced computed tomography (DCE-CT) and 18F-fluorodeoxyglucose-positron emission tomography (18F-FDG-PET) to phenotype tumors. Seventy-four lung cancer patients were prospectively recruited for 18F-FDG-PET/DCE-CT using PET/64-detector CT. After technical failures, there were 64 patients (35 males, 29 females; mean age [± SD] 67.5 ± 7.9 years). DCE-CT yielded tumor peak enhancement (PE) and standardized perfusion value (SPV). The uptake of 18F-FDG quantified on PET as the standardized uptake value (SUVmax) assessed tumor metabolism. The median values for SUVmax and SPV were used to define four vascular-metabolic phenotypes. There were associations (Spearman rank correlation [rs]) between tumor size and vascular-metabolic parameters: SUVmax versus size (rs = .40, p = .001) and SUV/PE versus size (r = .43, p < .001). Patients with earlier-stage (I-IIA, n = 30) disease had mean (± SD) SUV/PE 0.36 ± 0.28 versus 0.56 ± 0.32 in later-stage (stage IIB-IV, n = 34) disease (p = .007). The low metabolism with high vascularity phenotype was significantly more common among adenocarcinomas (p = .018), whereas the high metabolism with high vascularity phenotype was more common among squamous cell carcinomas (p = .024). Other non-small cell lung carcinoma tumor types demonstrated a high prevalence of the high metabolism with low vascularity phenotype (p = .028). We show that tumor subtypes have different vascular-metabolic associations, which can be helpful clinically in managing lung cancer patients to hone targeted therapy.  相似文献   

20.
IntroductionDeep learning (DL) is used to classify, detect, and quantify gold nanoparticles (AuNPs) in a human-sized phantom with a clinical MDCT scanner.MethodsAuNPs were imaged at concentrations between 0.0274 and 200 mgAu/mL in a 33 cm phantom. 1 mm-thick CT image slices were acquired at 120 kVp with a CTDIvol of 23.6 mGy. A convolutional neural network (CNN) was trained on 544 images to classify 17 different tissue types and AuNP concentrations. A second set of 544 images was then used for testing.ResultsAuNPs were classified with 95% accuracy at 0.1095 mgAu/mL and 97% accuracy at 0.2189 mgAu/mL. Both these concentrations are lower than what humans can visually perceive (0.3–1.4 mgAu/mL). AuNP concentrations were also classified with 95% accuracy at 150 and 200 mgAu/mL. These high concentrations result in CT numbers that are at or above the 12-bit limit for CT’s dynamic range where extended Hounsfield scales are otherwise required for measuring differences in contrast.ConclusionsWe have shown that DL can be used to detect AuNPs at concentrations lower than what humans can visually perceive and can also quantify very high AuNP concentrations that exceed the typical 12-bit dynamic range of clinical MDCT scanners. This second finding is possible due to inhomogeneous AuNP distributions and characteristic streak artifacts. It may even be possible to extend this approach beyond AuNP imaging in CT for quantifying high density objects without extended Hounsfield scales.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号