首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Cholesterol efflux was studied in cultured mouse adipose cells after preloading with low density lipoprotein cholesterol. Exposure to complexes containing human apolipoprotein A-IV and L-alpha-dimyristoylphosphatidylcholine (DMPC) as well as to human lipoprotein particles containing apolipoprotein A-IV but not apolipoprotein A-I and particles containing apolipoproteins A-IV and A-I showed that both artificial and native apolipoprotein A-IV-containing particles were able to promote cholesterol efflux at 37 degrees C as a function of time and concentration. The half-maximal concentration was found to be 0.3 X 10(-6) M for apolipoprotein A-IV.DMPC complexes. Binding experiments performed in intact cells at 4 degrees C with labeled apolipoprotein A-IV.DMPC complexes showed the existence of specific binding sites, with a Kd value of 0.32 x 10(-6) M and a maximal binding capacity of 223,000 sites/cell. By cross-competition experiments with labeled and unlabeled complexes containing apolipoprotein A-IV, A-I, or A-II, it appeared that all three apolipoproteins bind to the same cell-surface recognition sites. It is suggested that apolipoprotein A-IV, which is present in the interstitial fluid surrounding adipose cells in vivo at concentrations similar to those required in vitro for the promotion of cholesterol efflux, plays a critical role in cholesterol removal from peripheral cells.  相似文献   

2.
Apolipoprotein A-I is a major secretory product of the human hepatoma cell line, Hep G2; approx. 70% of apolipoprotein A-I was separated from the medium as lipid-poor apolipoprotein A-I in the d greater than 1.21 g/ml fraction while 30% was associated with high-density lipoproteins (HDL) of d 1.063-1.21 g/ml. The lipid-poor apolipoprotein A-I contains 50% proapolipoprotein A-I which is similar to the isoform distribution in Hep G2 preformed HDL. We tested the ability of lipid-poor apolipoprotein A-I from Hep G2 to form complexes with dimyristoylphosphatidylcholine (DMPC) vesicles at DMPC/apolipoprotein A-I molar ratios of 100:1 and 300:1. Lipid-poor apolipoprotein A-I was recovered in complex form while at a 300:1 ratio, 68.8 +/- 6.3% was recovered. On electron microscopy, the former complexes were small discs 16.9 nm +/- 4.5 S.D. in diameter while the latter were larger discs 21.4 +/- 4.4 nm diameter. Non-denaturing gradient gel electrophoresis of complexes formed at a 100:1 ratio had a peak in the region corresponding to 9.64 +/- 0.08 nm; these particles possessed two apolipoprotein A-I molecules. At the higher ratio, 300:1, two distinct complexes were identifiable, one which banded in the 9.7 nm region and the other in the 16.9-18.7 nm region. The former particles contained two molecules of apolipoprotein A-I and the latter, three molecules. This study demonstrates that lipid-poor apolipoprotein A-I which is rich in more basic isoforms forms discrete lipoprotein complexes similar to those formed by mature apolipoprotein A-I. It is further suggested that, under the appropriate conditions, precursor or nascent HDL may be assembled extracellularly.  相似文献   

3.
The interaction of HDL2b, a major subclass (d = 1.063 - 1.100 g/ml) of human plasma high-density lipoproteins, with discoidal complexes composed of dimyristoylphosphatidylcholine (DMPC) and apolipoprotein A-I (weight ratio, DMPC/apolipoprotein A-I (2.1 - 2.5:1); dimensions, 10.0 x 4.4 nm) was investigated. Incubation at 37 degrees C for 4.5 h of HDL2b with discoidal complexes resulted in a transfer of DMPC from the discoidal complexes to the HDL2b, a release of lipid-free apolipoprotein A-I from the discoidal complexes during such transfer, and a dissociation of some apolipoprotein A-I from the HDL2b surface. The number of discoidal complexes degraded during interaction with HDL2b depended on the initial molar ratio of HDL2b to discoidal complexes. Approximately one molecule of HDL2b was required for the degradation of one discoidal complex particle, and the degradation process appeared limited by the capacity of the HDL2b for uptake of DMPC. Degradation of discoidal complexes was also observed when human plasma LDL (d = 1.006-1.063 g/ml) was substituted for HDL2b in the interaction mixture.  相似文献   

4.
The effect of the inclusion of phosphatidylethanolamine (PE), a phospholipid with unusual packing properties, on the substrate properties of protein-lipid complexes toward lecithin-cholesterol acyltransferase (LCAT) has been studied. Recombinant particles of apolipoprotein A-I with dimyristoylphosphatidylcholine (DMPC), dilauroylphosphatidylethanolamine (DLPE) and cholesterol were prepared at a molar ratio of 1:140:14 (A-I/DMPC/cholesterol) or 1:70:70:14 (A-I/DMPC/DLPE/cholesterol); the efficiency of cholesterol incorporation into complexes containing phosphatidylethanolamine was found to be very pH-dependent, with enhanced cholesterol incorporation at elevated pH values. By incubating the complexes with either purified human LCAT or the d greater than 1.21 g/ml fraction of rat serum as a source of LCAT activity, it was found that a high degree of cholesterol esterification could be achieved with either complex; however, the DLPE-containing complex possessed a much smaller Stokes' diameter than the DMPC-only particle despite compositional similarities between these complexes. With respect to particle diameter the DLPE-containing particles behaved more like complexes prepared with egg yolk lecithin than did complexes prepared with DMPC alone. When human LDL was added to the incubations to provide a source of additional cholesterol, the products were markedly different. Concomitant with an increased cholesteryl ester core was an increase in the protein stoichiometry in both types of particles, from 2 to 3 or 4 apo A-I per particle. The proportion of DLPE to DMPC in the products was reduced from 1:1 to 0.3:1, reflecting a preferential hydrolysis of PE by LCAT, and the Stokes' diameters of the DMPC-only and the DLPE-containing complexes were closely similar. We conclude that the presence of elevated proportions of certain phospholipid species may significantly alter both the physical properties of the particles and their substrate properties with regard to reactions with enzymes of lipid metabolism.  相似文献   

5.
We have used a preparation of rat liver plasma membranes to study the binding of rat apolipoprotein E-deficient HDL to rat liver. The membranes were found to bind HDL by a saturable process that was competed for by excess unlabeled HDL. The binding was temperature-dependent and was 85% receptor-mediated when incubated at 4, 22 and 37 degrees C. The affinity of the binding site for the HDL was consistent at all temperatures, while the maximum binding capacity increased at higher temperatures. The specific binding of HDL to the membranes did not require calcium and was independent of the concentration of NaCl in the media. The effect of varying the pH of the media on HDL binding was small, being 30% higher at pH 6.5 than at pH 9.0. Both rat HDL and human HDL3 were found to compete for the binding of rat HDL to the membranes, whereas rat VLDL remnants and human LDL did not compete. At 4 degrees C, complexes of dimyristoylphosphatidylcholine (DMPC) and apolipoproteins A-I, A-IV and the C apolipoproteins, but not apolipoprotein E, competed for HDL binding to the membranes. At 22 and 37 degrees C, all DMPC-apolipoprotein complexes competed to a similar extent, DMPC vesicles that contained no protein did not compete for the binding of HDL. These results suggest that the rat liver possesses a specific receptor for apolipoprotein E-deficient HDL that recognizes apolipoproteins A-I, A-IV and the C apolipoproteins as ligands.  相似文献   

6.
Apolipoprotein A-IV, apolipoprotein E-2 and apolipoprotein E-3 were individually incorporated into defined phosphatidylcholine/cholesterol liposomes for study of lecithin:cholesterol acyltransferase activation. Enzyme activities obtained with these liposomes were compared with that from liposomes containing purified apolipoprotein A-I. Apolipoprotein A-IV, apolipoprotein E-2, and apolipoprotein E-3 all activated lecithin:cholesterol acyltransferase. With purified enzyme and with egg yolk phosphatidylcholine as the acyl donor, maximal activation was obtained at a concentration of approximately 0.5 nmol for apolipoprotein A-IV and 0.4 nmol for the apolipoprotein E isoforms. Apolipoprotein A-IV was approximately 25% as efficient as apolipoprotein A-I for the activation of purified enzyme; apolipoprotein E-2 was 40% as efficient, and apolipoprotein E-3, 30%. Similar activation results were obtained using plasma as the enzyme source. Analysis of the plasma of patients with absence of apolipoprotein A-I or with only trace amounts of apolipoprotein A-I exhibited a reduced rate of cholesterol esterification and lecithin:cholesterol acyltransferase activity that was proportional to the reduced level of the enzyme's mass. These results indicate that apolipoprotein A-IV and apolipoprotein E may serve as physiological cofactors for the enzyme reaction.  相似文献   

7.
The mechanism of the association of human plasma apolipoprotein A-I (apo A-I) with the acidic phospholipids, dimyristoylphosphatidylglycerol (DMPG), egg yolk phosphatidylglycerol, and dioleoylphosphatidylserine as well as with the zwitterionic dimyristoylphosphatidylcholine (DMPC) has been studied using turbidimetry, circular dichroism, high-sensitivity differential scanning calorimetry, and electron microscopy. The association of apo A-I with multilamellar liposomes of acidic phospholipids is rapid over a broad temperature range at and above the temperature of the lipid gel to liquid crystalline transition, Tc. This is in contrast to zwitterionic phosphatidylcholine which recombines with apo A-I only over a narrow temperature range around Tc. The complex of apo A-I with DMPC denatures at elevated temperatures giving rise to a calorimetrically detectable transition. The temperature range and width of this transition is shown to be markedly dependent on the heating rate. This is again in contrast to apo A-I recombinants with DMPG which show no calorimetrically detectable thermal denaturation, at least in a temperature range up to 100 degrees C. Also circular dichroism data indicate high resistance of apo A-I to thermal unfolding in the presence of DMPG. It is concluded that the complexes of apo A-I with DMPC are thermodynamically stable only at temperatures near Tc, whereas above and below this temperature range the stability of these recombinants is determined by kinetic factors. In contrast, complexes of apo A-I with DMPG and other acidic phospholipids may be thermodynamically stable over a wide temperature range greater than or equal to Tc. In spite of these fundamental differences between zwitterionic and acidic phospholipids in their mode of association with apo A-I, the binding affinity and the morphology of the recombinants are similar. Both apo A-I X DMPC and apo A-I X DMPG complexes form lipoprotein particles having a discoidal shape.  相似文献   

8.
Apolipoprotein A-IV is a member of the apo A-I/C-III/A-IV gene cluster. In order to investigate its hypothetical coordinated regulation, an acute phase was induced in pigs by turpentine oil injection. The hepatic expression of the gene cluster as well as the plasma levels of apolipoproteins were monitored at different time periods. Furthermore, the involvement of the inflammatory mediators' interleukins 1 and 6 and tumor necrosis factor in the regulation of this gene cluster was tested in cultured pig hepatocytes, incubated with those mediators and apo A-I/C-III/A-IV gene cluster expression at the mRNA level was measured. In response to turpentine oil-induced inflammation, a decreased hepatic apo A-IV mRNA expression was observed (independent of apo A-I and apo C-III mRNA) not correlating with the plasma protein levels. The distribution of plasma apo A-IV experienced a shift from HDL to larger particles. In contrast, the changes in apo A-I and apo C-III mRNA were reflected in their corresponding plasma levels. Addition of cytokines to cultured pig hepatocytes also decreased apo A-IV and apo A-I mRNA levels. All these results show that the down-regulation of apolipoprotein A-I and A-IV messages in the liver may be mediated by interleukin 6 and TNF-alpha. The well-known HDL decrease found in many different acute-phase responses also appears in the pig due to the decreased expression of apolipoprotein A-I and the enlargement of the apolipoprotein A-IV-containing HDL.  相似文献   

9.
The concentration of cholesterol, apolipoproteins A-I, B, and E has been determined in lymphedema fluid from nine patients with chronic primary lymphedema. The concentrations were: 38.14 +/- 21.06 mg/dl for cholesterol, 15.6 +/- 6.17 mg/dl for apolipoprotein A-I, 7.5 +/- 2.8 mg/dl for apolipoprotein B, and 1.87 +/- 0.50 mg/dl for apolipoprotein E. These values represent 23%, 12%, 6%, and 38% of plasma concentrations, respectively. The ratio of esterified to unesterified cholesterol in lymphedema fluid was 1.46 +/- 0.45. Lipoproteins of lymphedema fluid were fractionated according to particle size by gradient gel electrophoresis and by exclusion chromatography. Gradient gel electrophoresis showed that a majority of high density lipoproteins (HDL) of lymphedema fluid were larger than ferritin (mol wt 440,000) and smaller than low density lipoproteins (LDL); several discrete subpopulations could be seen with the large HDL region. Fractionation by exclusion chromatography showed that more than 25% of apolipoprotein A-I and all of apolipoprotein E in lymphedema fluid was associated with particles larger than plasma HDL2. Apolipoprotein A-I also eluted in fractions that contained particles the size of or smaller than albumin. Isolation of lipoproteins by sequential ultracentrifugation showed that less than 25% of lymphedema fluid cholesterol was associated with apolipoprotein B. The majority of apolipoprotein A-containing lipoproteins of lymphedema fluid were less dense than those in plasma. Ultracentrifugally separated fractions of lipoproteins were examined by electron microscopy. The fraction d less than 1.019 g/ml contained little material, while fraction d 1.019-1.063 g/ml contained two types of particles: round particles 17-26 nm in diameter and square-packing particles 13-17 nm on a side. Fractions d 1.063-1.085 g/ml had extensive arrays of square-packing particles 13-14 nm in size. Fractions d 1.085-1.11 g/ml and fractions d 1.11-1.21 g/ml contained round HDL, 12-13 nm diameter and 10 nm diameter, respectively. Discoidal particles were observed infrequently.  相似文献   

10.
Fang Y  Gursky O  Atkinson D 《Biochemistry》2003,42(45):13260-13268
Apolipoprotein A-I (apoA-I, 243 amino acids) is the major protein of high-density lipoproteins (HDL) that plays an important structural and functional role in lipid transport and metabolism. The central region of apoA-I (residues 60-183) is predicted to contain exclusively amphipathic alpha-helices formed from tandem 22-mer sequence repeats. To analyze the lipid-binding properties of this core domain, four terminally truncated mutants of apoA-I, Delta(1-41), Delta(1-59), Delta(1-41,185-243), and Delta(1-59,185-243), were expressed in baculovirus infected Sf-9 cells. The effects of mutations on the ability of apoA-I to form bilayer disk complexes with dimyristoyl phosphatidylcholine (DMPC) that resemble nascent HDL were analyzed by density gradient ultracentrifugation and electron microscopy (EM). The N-terminal deletion mutants, Delta(1-41) and Delta(1-59), showed altered lipid-binding ability as compared to plasma and wild-type apoA-I, and in the double deletion mutants, Delta(1-41, 185-243) and Delta(1-59, 185-243), the lipid binding was abolished. Thermal unfolding of variant apoA-I/DMPC complexes monitored by circular dichroism (CD) showed hysteresis and a shift in the melting curves by about -12 degrees C upon reduction in the heating rate from 1.0 to 0.067 K/min. This indicates an irreversible kinetically controlled transition with a high activation energy E(a) = 60 +/- 5 kcal/mol. CD and EM studies of the apoA-I/DMPC complexes at different pH demonstrated that changes in the net charge or in the charge distribution on the apoA-I molecule have critical effects on the conformation and lipid-binding ability of the protein.  相似文献   

11.
Highly polymorphic apolipoprotein A-IV locus in the baboon   总被引:1,自引:0,他引:1  
Apolipoprotein A-IV is found in mesenteric lymph chylomicrons, very low density lipoprotein particles, high density lipoprotein particles, and in the lipoprotein-free fraction of plasma. Apolipoprotein A-IV is polymorphic in a variety of species including human, dog, and horse. Efforts to estimate the impact of apolipoprotein A-IV structural variation on quantitative lipid levels in humans have been limited by the low frequency of the less common alleles. In the baboon, Papio hamadryas anubis, we have found apolipoprotein A-IV to be highly variable at the protein level with five alleles appearing at polymorphic frequency. We have confirmed the autosomal codominant inheritance of these five alleles in pedigreed baboons. The baboon has been shown to be a suitable animal model for the study of atherosclerosis, and the existence of a common, multi-allele apolipoprotein A-IV polymorphism in the baboon may be useful in elucidating the role of apolipoprotein A-IV in lipid metabolism.  相似文献   

12.
We examined the effects of apolipoproteins A-IV and A-I on the catabolism of whole particles by hepatoma G2 cells and cultured primary hepatocytes. For this type of experiment, high density lipoprotein is unsuitable, because all of its lipid and protein components independently dissociate and exchange and hence poorly trace whole particle catabolism. We therefore used phosphatidylcholine liposomes with radioactive tracers entrapped within their aqueous cores. Apolipoproteins A-IV, A-I, or E added to liposomes became liposome-associated and produced no detectable release of encapsulated label. As a positive control, apolipoprotein E doubled the uptake of labeled liposomes by hepatoma cells, compared to apolipoprotein-free controls, and this increase could be blocked by the addition of excess unlabeled low density lipoprotein. Degradation of labeled liposomes by hepatoma cells was increased 6-fold by the addition of apolipoprotein E. In contrast, neither apolipoprotein A-IV nor A-I increased cellular uptake or degradation of the particles. Similar results were obtained with primary hepatocytes. In studies using apolipoprotein combinations, apolipoproteins A-IV and A-I were each able to displace apolipoprotein E from liposomes and thereby reduce cellular uptake. Our data indicate that apolipoproteins A-IV and A-I do not facilitate uptake or degradation of whole particles by liver-derived cells in vitro. However, these apolipoproteins may modulate receptor-mediated uptake of particles by reducing the amount of particle-bound apolipoprotein E.  相似文献   

13.
A sensitive and rapid immunological detection method was used to screen for apolipoprotein A-IV variants. Antibodies to human lymph chylomicron or plasma apolipoprotein A-IV, and plasma apolipoprotein A-I were raised in rabbits. Antibodies to apolipoprotein A-I or apolipoprotein A-IV were shown to be monospecific to their respective antigens by reactivity against human chylomicron apolipoproteins by immunoblot analysis. Plasma samples were obtained from dyslipidemic subjects from the Lipid Research Clinic of Columbia University. The plasma samples were isoelectrically focused (pH 4-6) on slab gels. Plasma proteins were then transferred to nitrocellulose paper for immunoblotting. Apolipoprotein A-IV polymorphism was determined by specific immunological detection of apolipoprotein A-IV. Identical apolipoprotein A-IV isoprotein patterns were observed when either antibodies to lymph or plasma apolipoprotein A-IV were used for immunoblotting. All the dyslipidemic plasma samples screened contained the two major and one or two minor isoproteins of normal plasma. In two instances, new apolipoprotein A-IV variants having an additional isoform were detected. One subject was hypertriglyceridemic (triacylglycerols = 342 mg/dl, cholesterol = 251 mg/dl) and had an additional major acidic apolipoprotein A-IV isoform. Another subject with mild hypocholesterolemia (triacylglycerols = 209 mg/dl, cholesterol = 120 mg/dl) was found to have additional major and minor basic apolipoprotein A-IV isoforms. The specificity of this technique allows detection of polymorphism of apolipoproteins of similar isoelectric points by use of a single dimension isoelectric focusing gel. This technique also demonstrated the presence of altered apolipoprotein A-I isoforms in the plasma of a patient with Tangier disease. These isoforms were previously identified as isoforms 2 and 4 of normal plasma by use of two-dimensional gel electrophoresis. However, by use of this new technique and careful evaluation of previously published two-dimensional gels, we now identify these apolipoprotein A-I isoforms as being more acidic than those of normal plasma.  相似文献   

14.
The effects of injection of purified human or rat apolipoprotein (apo) A-I (1.7 mg/100 g body weight) on the size and composition of rat high density lipoprotein (HDL) particles have been investigated. The injection of human apo A-I results in the formation (over a period of 3 to 6 h) of a population of smaller HDL particles resembling human HDL3. This population of smaller particles contains human apo A-I and rat apo A-IV but lacks rat apo A-I and rat apo E. Small HDL3-like particles are not detected in rat plasma following the injection of rat apo A-I. Associated with the injection of either human or rat apo A-I is a gradual increase of plasma cholesterol levels of 20 to 50% (over 24 h) and the appearance of larger HDL particles. The results suggest that the smaller HDL particles in human plasma compared to rat plasma are not simply due to the action of lipid modifying enzymes or lipid transfer proteins but a specific property of human apo A-I.  相似文献   

15.
The distribution of apolipoproteins A-I and A-IV among lymph lipoprotein fractions was studied after separation by molecular sieve chromatography, avoiding any ultracentrifugation. Lymph was obtained from rats infused either with a glucose solution or with a triacylglycerol emulsion. Relative to glucose infusion, triacylglycerol infusion caused a 20-fold increase in the output of triacylglycerol, coupled with a 4-fold increase in output of apolipoprotein A-IV. The output of apolipoprotein A-I was only elevated 2-fold. Chromatography on 6% agarose showed that lymph apolipoproteins A-I and A-IV are present on triacylglycerol-rich particles and on particles of the size of HDL. In addition, apolipoprotein A-IV is also present as 'free' apolipoprotein A-IV. The increase in apolipoprotein A-I output is caused by a higher output of A-I associated with large chylomicrons only, while the increase in apolipoprotein A-IV output is reflected by an increased output in all lymph lipoprotein fractions, including lymph HDL and 'free' apolipoprotein A-IV. The increased level of 'free' A-IV, seen in fatty lymph, may contribute to, and at least partly explain, the high concentrations of 'free' apolipoprotein A-IV present in serum obtained from fed animals.  相似文献   

16.
To determine the apolipoprotein specificity of high density lipoprotein (HDL) receptor, apolipoprotein A-I (apo-AI) and apolipoprotein A-II (apo-AII) purified from high density lipoprotein3 (HDL3) were reconstituted into dimyristoyl phosphatidylcholine vesicles (DMPC) and their ability to bind to luteinized rat ovarian membranes was examined. Both 125I-apo-A-I.DMPC and 125I-apo-A-II.DMPC were shown to bind to ovarian membranes with Kd = 2.87 and 5.70 micrograms of protein/ml, respectively. The binding of both 125I-apo-A-I.DMPC and 125I-apo-A-II.DMPC was inhibited by unlabeled HDL3, apo-A-I.DMPC, apo-A-II.DMPC, apo-C-I.DMPC, apo-C-II.DMPC, apo-C-III1.DMPC, and apo-C-III2.DMPC, but not by DMPC vesicles, bovine serum albumin.DMPC or low density lipoprotein. Since the binding labeled apo-A-I.DMPC and apo-A-II.DMPC was inhibited by the DMPC complexes of apo-C groups, the direct binding of 125I-apo-C-III1.DMPC was also demonstrated with Kd = 9.6 micrograms of protein/ml. In addition, unlabeled apo-A-I.DMPC, and apo-A-II.DMPC, as well as apo-C.DMPC, inhibited 125I-HDL3 binding. 125I-apo-A-I, 125I-apo-A-II, and 125I-apo-C-III1 in the absence of DMPC also bind to the membranes. These results suggest that HDL receptor recognizes apolipoprotein AI, AII, and the C group and that the binding specificity of the reconstituted lipoproteins is conferred by their apolipoprotein moiety rather than the lipid environment. In vivo pretreatment of rats with human chorionic gonadotropin resulted in an increase of 125I-apo-A-I.DMPC, 125I-apo-A-II.DMPC, and 125I-apo-C-III1.DMPC binding activities. However, no induction of binding activity was observed when the apolipoprotein was not included in DMPC vesicles. An examination of the equilibrium dissociation constant and binding capacity for 125I-apo-A-I.DMPC and 125I-apo-A-II.DMPC after human chorionic gonadotropin treatment revealed that the increase in binding activity was due to an increase in the number of binding sites rather than a change in the binding affinity. These results further support our contention that apo-A-I, apo-A-II, and the apo-C group bind to HDL receptor. In conclusion, the HDL receptor of luteinized rat ovary recognizes apolipoproteins A-I, A-II, and the C group but not low density lipoprotein, and the binding is induced by human chorionic gonadotropin in vivo.  相似文献   

17.
The major bovine HDL subfraction, fraction I-HDL, was incubated with increasing amounts of dimyristoylphosphatidylcholine (DMPC). HDL size, as determined by gradient gel electrophoresis and electron microscopy, increased with increasing HDL-phospholipid to DMPC mole ratios. Control fraction I-HDL were spherical, hexagonally-packing particles with a peak on gradient gel electrophoresis at 12.3 +/- 0.1 nm; at a ratio of 1:0.5, larger, mainly spherical particles with a peak at 12.9 +/- 0.08 nm were formed. At a ratio of 1:1, occasional square-shaped particles were seen by electron microscopy; by gradient gel analysis, the mean diameter of the HDL-product increased to 13.7 +/- 0.1 nm. At the 1:2 ratio, extensive domains of square-packing particles were noted; the major size peak of this product was 14.6 +/- 0.08 nm. In all incubations with DMPC, a small 9.4 +/- 0.08 nm product was formed; it was most pronounced at the 1:2 ratio. The large, less dense particles generated by incubation contained apolipoprotein A-I and small molecular weight proteins. The 9.4 nm product contained only apolipoprotein A-I. The less dense product formed during incubation at the 1:2 ratio had a decreased protein-to-lipid ratio relative to control HDL and a 2-fold increase in percent phospholipid. At a 1:2 ratio, incorporation of DMPC into fraction I-HDL results in the loss of one molecule of apolipoprotein A-I; the resultant particle is a stable phospholipid-rich and protein-poor HDL which has a square-packing geometry. These phospholipid-laden HDL are morphologically similar to lipoproteins isolated from interstitial fluid or from plasma of abetalipoproteinemic patients. Our data suggest that the unusual morphological properties of the latter biologically formed particles may be due to increases in the polar lipid contents, and concomitant decreases in surface protein.  相似文献   

18.
Hepatic lipocytes, the retinoid-storing cells of the liver, share several characteristics with vascular smooth muscle cells. To determine whether they also share the characteristic of apolipoprotein E secretion, we have compared the relative mRNA expression and protein secretion of apolipoprotein E, apolipoprotein A-I, and apolipoprotein A-IV in early primary cultures of lipocytes, hepatocytes, and Kupffer cells. Expression of apolipoprotein mRNAs was detected using the polymerase chain reaction and oligonucleotide primers specific for apolipoprotein E, apolipoprotein A-I, and apolipoprotein A-IV. Cellular mRNA concentrations were compared by dot blot analysis, and apolipoprotein secretion was assessed by immunoblot analysis of culture media. Apolipoprotein E mRNA was found in all three cell types, whereas apolipoprotein A-I and A-IV mRNAs were detected only in hepatocytes. Hepatocyte, lipocyte, and Kupffer cell media all contained a Mr approximately 36,000 protein identified by an antibody specific for rat apolipoprotein E. The relative concentration of apolipoprotein E mRNA per microgram of total cellular RNA in lipocytes, hepatocytes, and Kupffer cells was 1.0, 3.0, and 1.6, respectively. The relative secretion of apolipoprotein E per cell was also lowest in lipocytes, being twofold greater in hepatocytes and 1.4-fold greater in Kupffer cells. The secretion of apolipoprotein E by lipocytes is not only an additional smooth muscle cell-like characteristic of the hepatic lipocyte, but also raises the possibility of retinol mobilization upon apolipoprotein secretion.  相似文献   

19.
Apolipoprotein A-IV is a 46kDa glycoprotein that is synthesized by intestinal enterocytes and is incorporated into the surface of nascent chylomicrons. Considerable evidence suggests that apolipoprotein A-IV plays a role in intestinal lipid absorption and chylomicron assembly. We have proposed that polymorphisms that alter the interfacial behavior of apolipoprotein A-IV may modulate the physical properties and metabolic fate of plasma chylomicrons. Of the reported genetic polymorphisms of apolipoprotein A-IV, two, Q360H and T347S, are known to occur at high frequencies among the world populations. Biophysical studies have established that the Q360H isoprotein displays higher lipid affinity; conversely the T347S isoprotein is predicted to be less lipid avid. Recent studies have shown that the Q360H polymorphism is associated with increased postprandial hypertriglyceridemia, a reduced low-density lipoprotein response to dietary cholesterol in the setting of a moderate fat intake, an increased high-density lipoprotein response to changes in total dietary fat content, and lower body mass and adiposity; the T347S polymorphism appears to confer the opposite effects. Studies on the diet-gene interactions of other apolipoprotein A-IV alleles are needed, as are studies on the interactions between apolipoprotein A-IV alleles and other apolipoprotein polymorphisms.  相似文献   

20.
To study the activation of lecithin-cholesterol acyl transferase (LCAT) (phosphatidylcholine:sterol O-acyltransferase, EC 2.3.1.43) by apolipoprotein D in comparison to apolipoproteins A-I and C-I, proteoliposomes with a phosphatidylcholine/free cholesterol molar ratio of 24:1, containing 10-300 micrograms/ml of apolipoproteins were used. The proteoliposomes were prepared by the cholate dialysis technique. In all proteoliposome preparations we found rouleaux structures and stacked discs. The particles formed with apolipoprotein A-I were the most homogeneous, followed by apolipoprotein D- and apolipoprotein C-I-containing particles. Apolipoprotein A-I was the most potent LCAT activator in our system followed by apolipoproteins C-I and D. The fractional esterification rate observed with apolipoprotein D-containing substrates amounted to 15-48% that of apolipoprotein A-I-containing ones. Neither apolipoprotein A-I- nor C-I-containing proteoliposomes gave linear reaction kinetics with LCAT. Even during the first 15-30 min of incubation, the kinetics deviated strikingly from linearity at all apolipoprotein concentrations. In contrast, proteoliposomes containing apolipoprotein D exhibited linear reaction kinetics up to 60-90 min. At low apolipoprotein A-I concentrations (5 micrograms/ml), the addition of apolipoprotein D to the incubates resulted in significantly higher esterification rates as compared to substrates containing apolipoprotein A-I only. This was not the case using substrates with high apolipoprotein A-I concentrations (50 micrograms/ml). From our results we speculate that apolipoprotein D may have some stabilizing effect on the enzyme LCAT.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号