首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
The anterior position of the human foramen magnum is often explained as an adaptation for maintaining balance of the head atop the cervical vertebral column during bipedalism and the assumption of orthograde trunk postures. Accordingly, the relative placement of the foramen magnum on the basicranium has been used to infer bipedal locomotion and hominin status for a number of Mio-Pliocene fossil taxa. Nonetheless, previous studies have struggled to validate the functional link between foramen magnum position and bipedal locomotion. Here, we test the hypothesis that an anteriorly positioned foramen magnum is related to bipedalism through a comparison of basicranial anatomy between bipeds and quadrupeds from three mammalian clades: marsupials, rodents and primates. Additionally, we examine whether strepsirrhine primates that habitually assume orthograde trunk postures exhibit more anteriorly positioned foramina magna compared with non-orthograde strepsirrhines. Our comparative data reveal that bipedal marsupials and rodents have foramina magna that are more anteriorly located than those of quadrupedal close relatives. The foramen magnum is also situated more anteriorly in orthograde strepsirrhines than in pronograde or antipronograde strepsirrhines. Among the primates sampled, humans exhibit the most anteriorly positioned foramina magna. The results of this analysis support the utility of foramen magnum position as an indicator of bipedal locomotion in fossil hominins.  相似文献   

2.
The fossil Tiktaalik roseae from the Late Devonian induces clear definition of the biomechanical and functional preconditions for a terrestrial lifestyle including quadrupedal standing and locomotion on limbs. Therefore, we determined the internal stresses in this model organism under the influence of gravity using the finite element method. Stress patterns during symmetrical two-forelimb support result from bending of trunk and neck. During asymmetrical one-forelimb support, as occurs during terrestrial locomotion, torsional stresses are higher than those caused by bending. The observed patterns of compressive stresses correspond well with the arrangement of compression-resistant materials: vertebral column, shoulder girdle and ribs. The tensile stresses are in accordance with the arrangement of longitudinal and oblique muscles forming the body wall. Torsional stresses concentrate along the periphery of the trunk, leaving its cavity free from mechanical stresses. Theoretical mechanics indicate that the flat skull and the mobility of the neck were advantageous for lateral snapping, similar to crocodiles. The same movement on land requires sprawling and flexed forelimbs. Our results can be interpreted as explanations for the tetrapod bauplan as well as confirmation and refinement of existing hypotheses about the lifestyle at the border between water and land of this early predecessor of terrestrial tetrapods.  相似文献   

3.
Hemodynamics and orthodynamics were investigated in quadrupeds (dogs) and in bipeds (humans). The subjects were investigated at rest in supine or lateral posture, in quadrupedal and then in bipedal posture, and during locomotion. Quadrupedalism in humans was with subjects on their hands and knees. Bipedalism in dogs was on hindlimbs with the forelimbs held by a technician. Blood flow in the main arteries of the body (aorta, external and internal carotid, subclavian, and femoral) was measured by sonography. Positional variations between the main bones of the body were determined from X-rays. This study investigated the reallocation of blood supply to different regions of the body when it switches from quadrupedal to bipedal posture and locomotion. Compared with resting posture, the principal findings are 1) cardiac output shows a minimal increase for humans in bipedal stance and a noticeable increase for dogs as well as humans in quadrupedal stance; 2) quadrupedal stance in humans and dogs and bipedal stance in dogs require increased blood supply to the muscles of the neck, back, and limbs, while human bipedal stance requires none of these; 3) cerebral blood flow (internal carotid) in humans did not change as a result of bipedal posture or locomotion, but showed a noticeable drop in quadrupedal posture and an even further drop in quadrupedal locomotion. The conclusion is that erect posture and encephalization produced a noticeable readjustment and reallocation of blood flow among the different regions of the body: This consisted in shifting a large volume of blood supply from the musculature to the human brain.  相似文献   

4.
T. Kimura 《Human Evolution》1991,6(5-6):377-390
The voluntary bipedal walking of infant chimpanzees was studied by the analysis of foot force and by motion analysis. The infants were trained to locomote on a level platform without any restrictions on the locomotor pattern. The voluntary bipedal walking was compared with the other types of locomotion at the same age and with the trained bipedal walking performed by other chimpanzees, including adult chimpanzees. The characteristics of voluntary bipedal walking in the infant until one year of age were: (1) high-speed walking with short cycle duration; (2) short stance phase duration; (3) small braking component of the preceding leg and large acceleration of the following leg; (4) one downward peak in the vertical component; and (5) a relatively small transverse component. Bipedal walking usually continued for less than one second and ended in quadrupedal locomotion. During walking, the preceding foot touched the floor, heel first, as in the case of older chimpanzees and humans. At this age, bipedal walking was similar to high-speed locomotion. The voluntary bipedal walking of the two-year-old and frour-yearold chimpanzees was characterized as follows: (1) slower speed than during quadrupedal locomotion, (2) relatively long periods and distances; (3) well balanced accelerating and braking components; and (4) a vertical component showing two downward peaks and a trough in between during numerous trials. The last characteristic means that the body center of gravity is higher in the single stance phase, just as in the bipedal walkinbg of the adult chimpanzees and humans. The bipedal walking of infant chimpanzees was discussed in comparison with the walking of humans, including infants.  相似文献   

5.
This is the first report of foot preference during locomotion in Old World monkeys. Foot preferences during the quadrupedal walking action and the bipedal shifting action of a naturalistic group of Sichuan snub-nosed monkeys (Rhinopithecus roxellana) in Zhouzhi National Nature Reserve in the Qinling Mountains of China were investigated. Twelve of 21 individuals tested on quadrupedal action and all 21 individuals tested on bipedal action exhibited a significant foot preference. Both significant right- and left-footed preferences were observed; sex affected neither direction nor strength of foot preference in both actions. The finding that 61.90% of focal R. roxellana showed a right-foot preference, both in quadrupedal action based on the footed index and in bipedal action based on the z-score, is in partial agreement with the postural origin hypothesis on footedness. Foot preference was significantly stronger in bipedal action than in quadrupedal action, supporting the view that posture could be a crucial factor influencing foot preference as well as hand preference in this species.  相似文献   

6.
The relationship between form and function in the lumbar vertebral column has been well documented among platyrrhines and especially catarrhines, while functional studies of postcranial morphology among strepsirrhines have concentrated predominantly on the limbs. This morphometric study investigates biomechanically relevant attributes of the lumbar vertebral morphology of 20 species of extant strepsirrhines. With this extensive sample, our goal is to address the influence of positional behavior on lumbar vertebral form while also assessing the effects of body size and phylogenetic history. The results reveal distinctions in lumbar vertebral morphology among strepsirrhines in functional association with their habitual postures and primary locomotor behaviors. In general, strepsirrhines that emphasize pronograde posture and quadrupedal locomotion combined with leaping (from a pronograde position) have the relatively longest lumbar regions and lumbar vertebral bodies, features promoting sagittal spinal flexibility. Indrids and galagonids that rely primarily on vertical clinging and leaping with orthograde posture share a relatively short (i.e., stable and resistant to bending) lumbar region, although the length of individual lumbar vertebral bodies varies phylogenetically and possibly allometrically. The other two vertical clingers and leapers, Hapalemur and Lepilemur, more closely resemble the pronograde, quadrupedal taxa. The specialized, suspensory lorids have relatively short lumbar regions as well, but the lengths of their lumbar regions are influenced by body size, and Arctocebus has dramatically longer vertebral bodies than do the other lorids. Lumbar morphology among galagonids appears to reflect a strong phylogenetic signal superimposed on a functional one. In general, relative length of the spinous processes follows a positively allometric trend, although lorids (especially the larger-bodied forms) have relatively short spinous processes for their body size, in accordance with their positional repertoire. The results of the study broaden our understanding of postcranial adaptation in primates, while providing an extensive comparative database for interpreting vertebral morphology in fossil primates.  相似文献   

7.
How viable is the argument that increased locomotor efficiency was an important agent in the origin of hominid bipedalism? This study reviews data from the literature on the cost of human bipedal walking and running and compares it to data on quadrupedal mammals including several non-human primate species. Literature data comparing the cost of bipedal and quadrupedal locomotion in trained capuchin monkeys and chimpanzees are also considered. It is concluded that increased energetic efficiency would not have accrued to early bipeds. Presumably, however, selection for improved efficiency in the bipedal stance would have occurred once the transition was made. Would such a process have included selection for increased limb length? Data on the cost of locomotion vs. limb length reveal no significant relationship between these variables in 21 species of mammals or in human walking or running. © 1996 Wiley-Liss, Inc.  相似文献   

8.
Setups that integrate both kinematics and morpho-functional investigations of a single sample constitute recent developments in the study of nonhuman primate bipedalisms. We introduce the integrated setup built at the Primatology Station of the French National Centre for Scientific Research (CNRS), which allows analysis of both bipedal and quadrupedal locomotion in a population of 55–60 captive olive baboons. As a first comparison, we present the hind limb kinematics of both locomotor modalities in 10 individuals, focusing on the stance phase. The main results are: 1) differences in bipedal and quadrupedal kinematics at the hip, knee, and foot levels; 2) a variety of foot contacts to the ground, mainly of semiplantigrade type, but also of plantigrade type; 3) equal variations between bipedal and quadrupedal foot angles; 4) the kinematics of the foot joints act in coordinated and stereotyped manners, but are triggered differently according to whether the support is bipedal or quadrupedal. Although very occasionally realized, the bipedal walk of olive baboon appears to be a habitual and nonerratic locomotor modality.  相似文献   

9.
We investigated the energetic costs of quadrupedal and bipedal walking in two Japanese macaques. The subjects were engaged in traditional bipedal performance for years, and are extremely adept bipeds. The experiment was conducted in an airtight chamber with a gas analyzer. The subjects walked quadrupedally and bipedally at fixed velocities (<5 km/hr) on a treadmill in the chamber for 2.5-6 min. We estimated energy consumption from carbon dioxide (CO2) production. While walking bipedally, energetic expenditure increased by 30% relative to quadrupedalism in one subject, and by 20% in another younger subject. Energetic costs increased linearly with velocity in quadrupedalism and bipedalism, with bipedal/quadrupedal ratios remaining almost constant. Our experiments were relatively short in duration, and thus the observed locomotor costs may include presteady-state high values. However, there was no difference in experimental duration between bipedal and quadrupedal trials. Thus, the issue of steady state cannot cancel the difference in energetic costs. Furthermore, we observed that switching of locomotor mode (quadrupedalism to bipedalism) during a session resulted in a significant increase of CO2 production. Taylor and Rowntree ([1973] Science 179:186-187) noted that the energetic costs for bipedal and quadrupedal walking were the same in chimpanzees and capuchin monkeys. Although the reason for this inconsistency is not clear, species-specific differences should be considered regarding bipedal locomotor energetics among nonhuman primates. Extra costs for bipedalism may not be great in these macaques. Indeed, it is known that suspensory locomotion in Ateles consumes 1.3-1.4 times as much energy relative to quadrupedal progression. This excess ratio surpasses the bipedal/quadrupedal energetic ratios in these macaques.  相似文献   

10.
We describe segment angles (trunk, thigh, shank, and foot) and joint angles (hip, knee, and ankle) for the hind limbs of bonobos walking bipedally ("bent-hip bent-knee walking," 17 sequences) and quadrupedally (33 sequences). Data were based on video recordings (50 Hz) of nine subjects in a lateral view, walking at voluntary speed. The major differences between bipedal and quadrupedal walking are found in the trunk, thigh, and hip angles. During bipedal walking, the trunk is approximately 33-41 degrees more erect than during quadrupedal locomotion, although it is considerably more bent forward than in normal human locomotion. Moreover, during bipedal walking, the hip has a smaller range of motion (by 12 degrees ) and is more extended (by 20-35 degrees ) than during quadrupedal walking. In general, angle profiles in bonobos are much more variable than in humans. Intralimb phase relationships of subsequent joint angles show that hip-knee coordination is similar for bipedal and quadrupedal walking, and resembles the human pattern. The coordination between knee and ankle differs much more from the human pattern. Based on joint angles observed throughout stance phase and on the estimation of functional leg length, an efficient inverted pendulum mechanism is not expected in bonobos.  相似文献   

11.
Compared to most quadrupedal mammals, humans are energetically inefficient when running at high speeds. This fact can be taken to mean that human bipedalism evolved for reasons other than to reduce relative energy cost during locomotion. Recalculation of the energy expended during human walking at normal speeds shows that (1) human bipedalism is at least as efficient as typical mammalian quadrupedalism and (2) human gait is much more efficient than bipedal or quadrupedal locomotion in the chimpanzee. We conclude that bipedalism bestowed an energetic advantage on the Miocene hominoid ancestors of the Hominidae.  相似文献   

12.
Sloths are morphologically specialized in suspensory quadrupedal locomotion and posture. During steady-state locomotion they utilize a trot-like footfall sequence. Contrasting the growing amount of published accounts of the functional morphology and kinematics of sloth locomotion, no study concerned with the dynamics of their quadrupedal suspensory locomotion has been conducted. Brachiating primates have been shown to travel at low mechanical costs using pendular mechanics, but this is associated with considerable dynamic forces exerted onto the support. To test whether sloth locomotion can be described by simple connected pendulum mechanics, we analyzed the dynamics of sloth locomotion with use of a mechanical segment link model. The model integrates the body segment parameters and is driven by kinematic data with both segment parameters and kinematic data obtained from the same sloth individual. No simple pendular mechanics were present. We then used the model to carry out an inverse dynamic analysis. The analysis allowed us to estimate net limb joint torques and substrate reaction forces during the contact phases. Predominant flexing limb joint torque profiles in the shoulder, elbow, hip, and knee are in stark contrast to published dominant extensor torques in the limb joints of pronograde quadrupedal mammals. This dissimilarity likely reflects the inverse orientation of the sloth towards the gravity vector. Nevertheless, scapular pivot and shoulder seem to provide the strongest torque for progression as expected based on unchanged basic kinematic pattern previously described. Our model predicts that sloths actively reduce the dynamical forces and moments that are transmitted onto the support. We conclude that these findings reflect the need to reduce the risk of breaking supports because in this case sloths would likely be unable to react quickly enough to prevent potentially lethal falls. To achieve this, sloths seem to avoid the dynamical consequences of effective pendular mechanics.  相似文献   

13.
Spontaneously acquired bipedal locomotion of an untrained Japanese monkey (Macaca fuscata) is measured and compared with the elaborated bipedal locomotion of highly trained monkeys to assess the natural ability of a quadrupedal primate to walk bipedally. The subject acquired bipedalism by himself because of the loss of his forearms and hands due to congenital malformation. Two other subjects are performing monkeys that have been extensively trained for bipedal posture and locomotion. We videotaped their bipedal locomotion with two cameras in a lateral view and calculated joint angles (hip, knee, and ankle) and inertial angle of the trunk from the digitized joint positions. The results show that all joints are relatively more flexed in the untrained monkey. Moreover, it is noted that the ankle is less plantar flexed and the knee is more flexed in mid-to-late stance phase in the untrained monkey, suggesting that the trunk is not lifted up to store potential energy. In the trained monkeys, the joints are extended to bring the trunk as high as possible in the stance phase, and then stored potential energy is exchanged for kinetic energy to move forward. The efficient inverted pendulum mechanism seems to be absent in the untrained monkeys locomotion, implying that acquisition of such efficient bipedal locomotion is not a spontaneous ability for a Japanese monkey. Rather, it is probably a special skill that can only be acquired through artificial training for an inherently quadrupedal primate.This revised version was published online in April 2005 with corrections to the cover date of the issue.  相似文献   

14.
Previous investigations have correlated vestibular function to locomotion in vertebrates by scaling semicircular duct radius of curvature to body mass. However, this method fails to discriminate bipedal from quadrupedal non-avian dinosaurs. Because they exhibit a broad range of relative head sizes, we use dinosaurs to test the hypothesis that semicircular ducts scale more closely with head size. Comparing the area enclosed by each semicircular canal to estimated body mass and to two different measures of head size, skull length and estimated head mass, reveals significant patterns that corroborate a connection between physical parameters of the head and semicircular canal morphology. Head mass more strongly correlates with anterior semicircular canal size than does body mass and statistically separates bipedal from quadrupedal taxa, with bipeds exhibiting relatively larger canals. This morphologic dichotomy likely reflects adaptations of the vestibular system to stability demands associated with terrestrial locomotion on two, versus four, feet. This new method has implications for reinterpreting previous studies and informing future studies on the connection between locomotion type and vestibular function.  相似文献   

15.
Effect of posture and locomotion on energy expenditure   总被引:3,自引:0,他引:3  
Energy expenditure for human adults and infants and for dogs was measured in resting (supine or lateral) posture, in bipedal posture and locomotion, and in quadrupedal posture and locomotion. Variations in respiratory and heart rate and in body temperature were utilized in this comparative study. Oxygen consumption was also measured in human adults. In human adults, bipedal posture and locomotion were shown to be much less energy-consuming than corresponding quadrupedal posture and locomotion. The opposite was observed in adult dogs, where bipedalism was shown to be much more energy-consuming than quadrupedalism. In addition, this study demonstrated, for human adults in their natural erect posture, an energy expenditure barely higher than in supine or lateral resting posture, while the dogs in their natural quadrupedal stance, the energy expenditure is much higher than in their resting posture. With respect to energy, therefore, humans are more adapted to bipedalism than dogs to quadrupedalism. Human children, at the transitional stage between quadrupedalism and bipedalism, have high and almost equal requirements for all postures and locomotions. This demonstrates, in term of energy, their incomplete adaptation to erect behavior.  相似文献   

16.
The comparison of certain proportions of lumbar vertebral bodies and of the lumbar column as a whole between a range of primate and non-primate mammals suggests that the relatively high robusticity of the lumbar column in primates may be related to habitual trunkal erectness. A decrease in the total number of lumbar vertebrae and high robusticity of individual vertebrae may be associated with large body size and positional habits in which trunkal erectness is particularly important. In some groups of primates proportions may relate to particular back movements occurring during quadrupedal progression or to positional suspension. Allometric regressions suggest that resistance to bending may be as important a function of lumbar vertebral bodies as resistance to compression. The proportions of the immediately pre-sacral lumbar vertebral bodies help to produce the normal human lumbar lordosis, but other factors must also be involved in the formation of the lordosis.  相似文献   

17.
We collected high-resolution plantar pressure distributions of seven bonobos during terrestrial bipedal and quadrupedal locomotion (N = 146). Functional foot length, degree of hallux abduction, and total contact time were determined, and plots, showing pressure as a function of time for six different foot regions, were generated. We also studied five adult humans for comparison (N = 13). Both locomotion types of the bonobo show a large variation in plantar pressure distributions, which could be due to the interference of instantaneous behavior with locomotion and differences in walking speed and body dimensions. The heel and the lateral midfoot typically touch down simultaneously at initial ground contact in bipedal and quadrupedal walking of bonobos, in contrast with the typical heel-strike of human bipedalism. The center of pressure follows a curved course during quadrupedalism, as a consequence of the medial weight transfer during mid-stance. Bipedal locomotion of bonobos is characterized by a more plantar positioning of the feet and by a shorter contact time than during quadrupedal walking, according to a smaller stride and step length at a higher frequency. We observed a varus position of the foot with an abducted hallux, which likely possesses an important sustaining and stabilizing function during terrestrial locomotion.  相似文献   

18.
In most bony fishes vertebral column strain during locomotion is almost exclusively in the intervertebral joints, and when these joints move there is the potential to store and release strain energy. Since cartilaginous fishes have poorly mineralized vertebral centra, we tested whether the vertebral bodies undergo substantial strain and thus may be sites of energy storage during locomotion. We measured axial strains of the intervertebral joints and vertebrae in vivo and ex vivo to characterize the dynamic behavior of the vertebral column. We used sonomicrometry to directly measure in vivo and in situ strains of intervertebral joints and vertebrae of Squalus acanthias swimming in a flume. For ex vivo measurements, we used a materials testing system to dynamically bend segments of vertebral column at frequencies ranging from 0.25 to 1.00 Hz and a range of physiologically relevant curvatures, which were determined using a kinematic analysis. The vertebral centra of S. acanthias undergo strain during in vivo volitional movements as well as in situ passive movements. Moreover, when isolated segments of vertebral column were tested during mechanical bending, we measured the same magnitudes of strain. These data support our hypothesis that vertebral column strain in lateral bending is not limited to the intervertebral joints. In histological sections, we found that the vertebral column of S. acanthias has an intracentral canal that is open and covered with a velum layer. An open intracentral canal may indicate that the centra are acting as tunics around some sections of a hydrostat, effectively stiffening the vertebral column. These data suggest that the entire vertebral column of sharks, both joints and centra, is mechanically engaged as a dynamic spring during locomotion.  相似文献   

19.
As a first step towards developing a dynamic model of the rat hindlimb, we measured muscle attachment and joint center coordinates relative to bony landmarks using stereophotogrammetry. Using these measurements, we analyzed muscle moment arms as functions of joint angle for most hindlimb muscles, and tested the hypothesis that postural change alone is sufficient to alter the function of selected muscles of the leg. We described muscle attachment sites as second-order curves. The length of the fit parabola and residual errors in the orthogonal directions give an estimate of muscle attachment sizes, which are consistent with observations made during dissection. We modeled each joint as a moving point dependent on joint angle; relative endpoint errors less than 7% indicate this method as accurate. Most muscles have moment arms with a large range across the physiological domain of joint angles, but their moment arms peak and vary little within the locomotion domain. The small variation in moment arms during locomotion potentially simplifies the neural control requirements during this phase. The moment arms of a number of muscles cross zero as angle varies within the quadrupedal locomotion domain, indicating they are intrinsically stabilizing. However, in the bipedal locomotion domain, the moment arms of these muscles do not cross zero and thus are no longer intrinsically stabilizing. We found that muscle function is largely determined by the change in moment arm with joint angle, particularly the transition from quadrupedal to bipedal posture, which may alter an intrinsically stabilizing arrangement or change the control burden.  相似文献   

20.
Trabecular (or cancellous) bone has been shown to respond to mechanical loading throughout ontogeny and thus can provide unique insight into skeletal function and locomotion in comparative studies of living and fossil mammalian morphology. Trabecular bone of the hand may be particularly functionally informative because the hand has more direct contact with the substrate compared with the remainder of the forelimb during locomotion in quadrupedal mammals. This study investigates the trabecular structure within the wrist across a sample of haplorhine primates that vary in locomotor behaviour (and thus hand use) and body size. High‐resolution microtomographic scans were collected of the lunate, scaphoid, and capitate in 41 individuals and eight genera (Homo, Gorilla, Pan, Papio, Pongo, Symphalangus, Hylobates, and Ateles). We predicted that particular trabecular parameters would 1) vary across suspensory, quadrupedal, and bipedal primates based on differences in hand use and load, and 2) scale with carpal size following similar allometric patterns found previously in other skeletal elements across a larger sample of mammals and primates. Analyses of variance (trabecular parameters analysed separately) and principal component analyses (trabecular parameters analysed together) revealed no clear functional signal in the trabecular structure of any of the three wrist bones. Instead, there was a large degree of variation within suspensory and quadrupedal locomotor groups, as well as high intrageneric variation within some taxa, particularly Pongo and Gorilla. However, as predicted, Homo sapiens, which rarely use their hands for locomotion and weight support, were unique in showing lower relative bone volume (BV/TV) compared with all other taxa. Furthermore, parameters used to quantify trabecular structure within the wrist scale with size generally following similar allometric patterns found in trabeculae of other mammalian skeletal elements. We discuss the challenges associated with quantifying and interpreting trabecular bone within the wrist. J. Morphol. 275:572–585, 2014. © 2013 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号